×
18.05.2019
219.017.5b73

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВОЛОКНИСТОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к волокнистым керамическим материалам, которые способны выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности и которые предназначены для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей. Технический результат изобретения заключается в повышении рабочей температуры керамического материала до 1650°C, обладающего высокой упругостью, низкой плотностью и теплопроводностью. Готовят волокнистый керамический шликер. Путем вакуумного формования получают волокнистый мат с последующей его сушкой. Далее мат погружают в золь-гель связующее на 1/4-3/4 его высоты. Термообработку гелированного мата осуществляют по ступенчатому режиму, включающему нагрев до (80-100)°C, выдержку 8-72 часа, нагрев до (250-350)°С со скоростью (20-50)°C/час, выдержку 2-4 часа, нагрев до (1000-1400)°C со скоростью (100-200)°C/час, выдержку 1-4 часа. 2 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к авиационной и энергетической промышленности, а именно к способам получения волокнистых керамических материалов, способных выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности, предназначенных для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей с температурой горячих газов до 1650°C.

Известен способ получения волокнистого керамического материала, включающий получение мелких фрагментов керамических волокон, перемешивание их в коллоидном растворе неорганического материала до образования мелких волокнистых глобул, вакуумное формование волокнистой заготовки и последующее ее прессование (Патент США №5858289).

Известен также способ получения волокнистого керамического композиционного материала, включающий приготовление водного шликера, содержащего оксидные керамические волокна системы Al2O3-SiO2-ZrO2, органическое связующее, в качестве которого используют метилцеллюлозу или эмульсию сополимера полиакриламида, и неорганическое связующее в виде коллоидного оксида кремния или алюминия; получение заготовки методом вакуумного формования, ее сушку и термообработку (Патент США №6444600).

Недостатком известных способов является то, что волокнистые керамические материалы, получаемые этими способами, не обладают упругими свойствами хотя бы с одной стороны материала. При однородной высокой плотности и прочности по всему объему волокнистый керамический материал не обладает демпфирующими свойствами и при повышенных вибрационных нагрузках склонен к разрушению, поэтому при использовании его в качестве теплоизоляции камер сгорания газотурбинных двигателей (ГТД) необходимо дополнительно применять демпфирующие прокладки.

Наиболее близким аналогом, взятым за прототип, является способ получения волокнистого керамического материала из алюмосиликатных, муллитовых или оксидоциркониевых волокон, включающий приготовление по крайней мере одного волокнистого керамического шликера, вакуумное формование волокнистого мата, его сушку, пропитку алюмооксидным золь-гель связующим, гелирование пропитанного мата в атмосфере аммиака с последующей термообработкой и повторение операций пропитки мата золь-гель связующим, его гелирования и термообработки (Патент США №5198282).

Недостатком способа-прототипа является то, что при первой пропитке волокнистого мата золь-гель связующим и его последующем отверждении происходит образование керамических связей между волокнами по всей высоте мата, в результате чего мат размерно стабилизируется и при этом утрачивает упругие свойства. При последующих его пропитках золь-гель связующим повышаются его прочность и плотность, а упругие и демпфирующие свойства снижаются. Поэтому материал имеет низкие эксплуатационные свойства в условиях высоких вибрационных и термических нагрузок. Кроме того, многократное повторение цикла пропитки мата связующим, гелирования и термообработки существенно увеличивает продолжительность производственного цикла и повышает стоимость материала.

Технической задачей изобретения является разработка способа получения волокнистого керамического материала с рабочей температурой до 1650°C, обладающего высокой упругостью, низкой плотностью и теплопроводностью на уровне прототипа.

Для решения поставленной задачи предложен способ получения волокнистого керамического материала, включающий приготовление по крайней мере одного волокнистого керамического шликера, вакуумное формование волокнистого мата, сушку, пропитку золь-гель связующим и гелирование волокнистого мата с последующей термообработкой, отличающийся тем, что пропитку волокнистого мата осуществляют путем его погружения в золь-гель связующее на 1/4-3/4 его высоты, а термообработку гелированного мата осуществляют по ступенчатому режиму, включающему нагрев до (80-100)°C, выдержку 8-72 часа, нагрев до (250-350)°C со скоростью (20-50)°С/час, выдержку 2-4 часа, нагрев до (1000-1400)°C со скоростью (100-200)°C, выдержку 1-4 часа.

Волокнистый керамический шликер содержит волокно оксида алюминия, оксида циркония, алюмосиликатное, муллитововое, кварцевое или их смесь.

В качестве золь-гель связующего используют оксид кремния, соли оксидов алюминия, циркония, гафния или их смесь.

Введение золь-гель связующего определенного объема, осуществляемое методом погружения мата в раствор золь-гель связующего, обеспечивает частичную пропитку мата на заданную высоту благодаря капиллярным силам. Такая пропитка позволяет получить волокнистый материал с необходимым градиентом плотности, имеющий жесткий керамический слой с одной стороны и мягкий упругий слой непропитанных связующим волокон с другой. Обеспечение в волокнистом материале слоя, не содержащего золь-гель связующего, способствует повышению упругости и демпфирующих свойств материала, кроме того, мягкий волокнистый слой легко может принимать форму изолируемой конструкции, заполняя все неровности и шероховатости, что способствует повышению тепловых свойств изделия.

Способ получения волокнистого керамического материала может включать приготовление одного или более волокнистых керамических шликеров. В зависимости от количества используемых шликеров в результате последовательного вакуумного формования материал будет иметь слои волокон различного состава или размера, в результате чего будет обладать различными физическими и тепловыми свойствами в разных зонах.

Например, при использовании первого керамического шликера из более короткого волокна получают более плотный слой волокнистого мата, при использовании второго керамического шликера из более длинного волокна непосредственно на первом слое методом вакуумного формования получают второй, более пористый волокнистый слой.

Проведение термообработки по предлагаемому режиму позволяет получить волокнистый керамический материал с бездефектной структурой. Медленный нагрев со скоростью 20-50°C/час обеспечивает плавный уход летучих компонентов связующего и предотвращает процессы диффузии связующего к поверхности материала в процессе твердения (т.н. «высаливание»), которые могут приводить к неравномерной и дефектной структуре. Высокотемпературная выдержка при 1000-1400°C в течение 1-4 часов обеспечивает образование в структуре материала вторичного муллита и фазы α-Al2O3, что позволяет получить стабильную структуру и свойства при температурах до 1650°C.

Примеры осуществления

Пример 1. Получение образца волокнистого керамического материала, содержащего волокно состава 80% Al2O3-20% SiO2, имеющего жесткий керамический слой высотой 1/4 от высоты материала.

Для приготовления волокнистого керамического шликера взяли 40 г керамического муллитового волокна состава 80% Al2O3-20% SiO2, диаметром 1-3 мкм и средней длиной 7-12 мм, 5 г поливинилового спирта и 1 л воды, полученную смесь перемешивали в течение 10 мин. Приготовленный шликер отливали в квадратную форму 10×10 см с перфорированным дном и формовали волокнистый мат вакуумным методом. Приготовленный волокнистый мат сушили при 80°C до постоянной массы. Полученный образец пропитали золь-гель связующим, в качестве которого использовали водный раствор азотнокислого алюминия и коллоидного оксида кремния.

Пропитку мата осуществляли методом погружения волокнистого мата в раствор связующего на 1/4 высоты мата. Гелирование проводили на воздухе в течение 24 часов. Термообработку гелированного мата проводили по следующему режиму: 100°C - 8 часов, нагрев от 100°C до 250°C со скоростью 20°C/час, выдержка 2 часа, нагрев до 1000°C со скоростью 100°C/час, выдержка 1 час.

Упругость мата определяли по ГОСТ 117-77. Теплопроводность измеряли при комнатной температуре и при 1300°C. Результаты испытаний приведены в таблице.

Пример 2. Получение образца волокнистого керамического материала, содержащего два слоя волокна различной плотности, имеющего жесткий керамический слой высотой 1/2 от высоты материала.

Для получения керамического материала приготовили два волокнистых шликера. Первый шликер готовили путем перемешивания 25 г молотого волокна состава 80% Al2O3 - 20% SiO2 диаметром 1-3 мкм и средней длиной 10-20 мм и 3 г кварцевого волокна диаметром 1-2 мкм в 0,7 л воды. Методом вакуумного формования получили первый слой материала.

Второй шликер готовили путем перемешивания 15 г волокна состава 80% Al2O3 - 20% SiO2 диаметром 1-3 мкм и средней длиной 30-50 мм и 5 г поливинилацетата в 0,7 л воды. Его отливали непосредственно на первый слой волокнистой заготовки, получив двухслойный волокнистый мат.

Полученный образец сушили при температуре 90°C до постоянной массы. Затем образец на 1/2 его высоты пропитали золь-гель связующим, в качестве которого использовали раствор оксихлоридов алюминия и циркония и коллоидного оксида кремния. Далее образец подвергли термообработке по режиму: 90°C - 36 часов, нагрев от 90°C до 300°C со скоростью 35°C/час, выдержка 3 часа, нагрев до 1200°C со скоростью 150°C/час, выдержка 3 часа.

На Фиг.1 представлен образец волокнистого керамического материала по примеру 2, где (1) - первый, более плотный, слой волокон состава 80% Al2O3 - 20% SiO2 диаметром 1-3 мкм и средней длиной 10-20 мм, (2) - второй, более пористый, слой волокон состава 80% Al2O3 - 20% SiO2 диаметром 1-3 мкм и средней длиной 30-50 мм и (3) - жесткий керамический слой золь-гель связующего с градиентом плотности.

Пример 3. Получение образца волокнистого керамического материала, имеющего жесткий керамический слой высотой 3/4 от высоты материала.

Приготовление образца проводили по примеру 1, только пропитку осуществляли на 3/4 от высоты мата.

Гелирование проводили в парах аммиака при температуре 20°C в течение 12 часов, а термообработку проводили по режиму: 80°C - 72 часа, нагрев от 80°C до 350°C со скоростью 50°C/час, выдержка 4 часа, нагрев до 1400°C со скоростью 200°C/час, выдержка 4 часа.

Пример 4 (по прототипу). Получение образца волокнистого керамического материала.

Приготовили волокнистый керамический шликер из 30 г алюмосиликатных волокон диаметром 1 мкм и длиной 6-7 мм, перемешивали в 3 л воды в течение 30 мин и получили волокнистый мат методом вакуумного фильтрования. Мат сушили при 93°C до постоянной массы. Золь-гель связующее приготовили из 459 г изопропоксида алюминия, 18 г соляной кислоты и 4 л дистиллированной воды, выдержали 3 суток и упарили до концентрации 7 г/см3 в пересчете на оксид алюминия. Полученным золем пропитали волокнистый мат, пока он полностью не увлажнился. Гелирование проводили в аммиачных парах при комнатной температуре в течение 1 часа. Термообработку проводили по режиму: 93°C - 4 часа, нагрев до 316°C со скоростью 0,7°C/час, охлаждение до 93°C - выдержка 2 часа. После этого пропитку золь-гель связующим, гелирование и термообработку повторили еще раз. Получили жесткий волокнистый керамический материал с равномерной плотностью по всему объему 0,35 г/см3.

Из таблицы видно, что материал, полученный предлагаемым способом, имеет плотность ниже на 30-40%, в полтора раза выше температуру эксплуатации, имеет высокие упругие свойства, которыми не обладает материал прототипа. Теплопроводность материала при высокой температуре сравнима с теплопроводностью материала прототипа, а при комнатной температуре даже ниже на 30-50%. Кроме того, продолжительность технологического цикла получения волокнистого керамического материала сокращена за счет отсутствия повторных операций пропитки, гелирования и термообработки материала, что позволяет снизить стоимость материала.

Высокая упругость позволит материалу демпфировать вибрационные нагрузки в процессе эксплуатации, а также обеспечит плотное прилегание к изолируемым поверхностям сложной формы. Материал, полученный предлагаемым способом, найдет применение в качестве теплоизоляции высокоэнергетических установок, камер сгорания газотурбинных двигателей и в других отраслях промышленности.

Таблица
Пример Состав волокна Высота пропитки, % Режим термообработки Температура эксплуатации, °C Средняя плотность образца, г/см3 Упругость, % Теплопроводность
При 20°C При 1300°C
1 Муллит 80% Al2O3-20% SiO2) 25 100°C - 8 часов, нагрев от 100°C до 250°C со скоростью 20°C/час, выдержка 2 часа, нагрев до 1000°C со скоростью 100°C/час, выдержка 1 час до 1650°C 0,23 90 0,07 0,37
2 1 слой - муллит (80% Al2O3-20% SiO2) + кварц (SiO2); 2 слой - (80% Al2O3-20% SiO2) 50 90°C - 36 часов, нагрев от 90°C до 300°C со скоростью 35°C/час, выдержка 3 часа, нагрев до 1200°C со скоростью 150°C/час, выдержка 3 часа до 1650°C 0,20 70 0,05 0,36
3 Муллит (80% Al2O3-20% SiO2) 75 80°C - 72 часа, нагрев от 80°C до 350°C со скоростью 50°C/час, выдержка 4 часа, нагрев до 1400°C со скоростью 200°C/час, выдержка 4 часа до 1650°C 0,27 95 0,07 0,37
4 прототип Алюмосиликатное волокно (45% Al2O3-65% SiO2 100 93°C - 4 часа, нагрев до 316°C со скоростью 0,7°C/час, охлаждение до 93°C - выдержка 2 часа до 1000°C 0,35 0 0,10 0,40

Источник поступления информации: Роспатент

Showing 121-130 of 251 items.
10.09.2015
№216.013.777c

Установка для сварки трением с перемешиванием

Установка может быть использована при сварке трением прессованных или катаных тонкостенных полуфабрикатов неограниченной длины из алюминиевых сплавов. Сварочный инструмент закреплен на корпусе, имеющем привод его поступательного перемещения вдоль линии сварки по горизонтальной поверхности...
Тип: Изобретение
Номер охранного документа: 0002562177
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7888

Стенд для измерения стато - динамических характеристик физических объектов

Изобретение относится к области измерительной техники и может быть использовано для измерения массы, координат центра масс и моментов инерции объектов машиностроения. Устройство состоит из динамометрической платформы для измерения массы изделия, пятикомпонентного динамометрического элемента,...
Тип: Изобретение
Номер охранного документа: 0002562445
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d02

Устройство для контроля подводного плавсредства с самого плавсредства

Использование: изобретение относится к области гидроакустики и может быть использовано для оперативного контроля параметров подводного шума плавсредства с помощью гидроакустического рабочего средства измерений (РСИ) с самого плавсредства. Сущность: с самого плавсредства в режиме стабилизации...
Тип: Изобретение
Номер охранного документа: 0002563599
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d71

Способ контроля обледенения жалюзи воздухоприемной решетки

Изобретение предназначено для определения начала обледенения жалюзи воздухоприемной решетки при исследовании тепловых процессов, осуществляемых в целях защиты от обледенения. Обледенение решетки жалюзи определяют по образованию инея на влажном марлевом бинте, который предварительно укладывают...
Тип: Изобретение
Номер охранного документа: 0002563710
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d75

Крупногабаритная воздухоприемная решетка с обогреваемыми жалюзи

Изобретение относится к области защиты судовых устройств от обледенения. Решетка с обогреваемыми жалюзи выполнена из модулей-ршеток, заполненных теплопроводным компаундом и объединенных общей рамой. Греющие кабели проложены в разных модулях, объедены в общую электрическую сеть и запитаны от...
Тип: Изобретение
Номер охранного документа: 0002563714
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d76

Способ защиты воздухозаборных решеток с жалюзи от обледенения и устройство для его осуществления

Изобретение относится к устройствам для защиты вентиляционных решеток с жалюзи от обледенения. Устройство содержит полые жалюзи для прокладки внутри них греющего кабеля и заполнения теплопроводящим веществом частей полости жалюзи. Торцы элементов ребер жесткости выполнены вогнутыми...
Тип: Изобретение
Номер охранного документа: 0002563715
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7f07

Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник...
Тип: Изобретение
Номер охранного документа: 0002564116
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.818f

Способ легирования стали

Изобретение относится к области металлургии и может быть использовано при получении быстрорежущей стали из отходов изношенного режущего инструмента. В способе осуществляют расплавление отходов в индукционной тигельной печи с последующим проведением химанализа полученного расплава и...
Тип: Изобретение
Номер охранного документа: 0002564764
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.86f2

Способ получения пенополиуретанового нанокомпозита

Изобретение относится к производству полимерных композитов на основе пенополиуретанов, которые могут быть использованы для теплоизоляции конструкций в судостроении, авиастроении и автомобильной промышленности. Способ получения пенополиуретанового нанокомпозита включает предварительную...
Тип: Изобретение
Номер охранного документа: 0002566149
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87f8

Пьезоэлектрический акселерометр

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Пьезоэлектрический акселерометр содержит предусилитель и концентрично расположенные кольцевые инерционную массу, корпус и первый...
Тип: Изобретение
Номер охранного документа: 0002566411
Дата охранного документа: 27.10.2015
Showing 1-10 of 10 items.
27.06.2013
№216.012.5056

Способ получения керамического изделия

Изобретение относится к способам получения керамических материалов, предназначенных для высокотемпературных изделий конструкционного назначения, таких как элементы камеры сгорания и соплового аппарата газотурбинного двигателя. Способ получения керамического изделия на основе муллита,...
Тип: Изобретение
Номер охранного документа: 0002486159
Дата охранного документа: 27.06.2013
27.03.2014
№216.012.aea6

Волокнистый композиционный материал

Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными волокнами оксида алюминия, и может быть использовано в качестве конструкционного материала в авиационной технике. Волокнистый композиционный материал представляет собой...
Тип: Изобретение
Номер охранного документа: 0002510425
Дата охранного документа: 27.03.2014
10.10.2014
№216.012.fabb

Способ получения керамического волокна на основе zro и sio

Изобретение относится к способам получения огнеупорных материалов и изделий из оксидов циркония и кремния и найдет применение при изготовлении высокотермостойких теплозащитных материалов, таких как нити, ткани, нетканые материалы, оплетки и шнуры, а также в качестве упрочнителей композиционных...
Тип: Изобретение
Номер охранного документа: 0002530033
Дата охранного документа: 10.10.2014
20.06.2015
№216.013.5744

Способ получения волокнистого теплоизоляционного материала

Изобретение относится к нетканым теплоизоляционным и пожаробезопасным материалам на основе неорганических волокон и касается способа получения волокнистого теплоизоляционного материала. Способ включает приготовление водного шликера, содержащего огнеупорные волокна, получение сырой заготовки...
Тип: Изобретение
Номер охранного документа: 0002553870
Дата охранного документа: 20.06.2015
13.02.2018
№218.016.206d

Гибкий теплозвукоизоляционный волокнистый материал низкой плотности

Изобретение относится к теплозвукоизоляционным материалам, в частности к волокнистым материалам авиационного назначения с пониженным удельным весом, высокими тепловыми свойствами, отвечающим требованиям пожарной безопасности. Обеспечение надежной работы теплоизоляции в условиях циклических...
Тип: Изобретение
Номер охранного документа: 0002641495
Дата охранного документа: 17.01.2018
08.07.2018
№218.016.6eb5

Способ изготовления деталей из титановых псевдо - α - сплавов

Изобретение может быть использовано для получения сверхпластической штамповкой изделий сложной формы. Осуществляют вакуумно-дуговую выплавку слитка из сплава ВТ20 и изготовление детали сверхпластической деформацией слитка при скорости деформации 10 с с последующими термической обработкой. При...
Тип: Изобретение
Номер охранного документа: 0002660461
Дата охранного документа: 06.07.2018
08.03.2019
№219.016.d52d

Способ получения комбинированной нити на основе коротких волокон и устройство для его осуществления

Изобретение относится к способам получения комбинированных нитей, содержащих короткие волокна, в частности, к высокотемпературным нитям для получения огнеупорных материалов, а также к устройствам для их получения. Способ получения комбинированной нити на основе коротких волокон, включает подачу...
Тип: Изобретение
Номер охранного документа: 0002419692
Дата охранного документа: 27.05.2011
01.05.2019
№219.017.4793

Способ ультразвукового контроля изделий из композиционных материалов

Использование: для ультразвукового контроля изделий из композиционных материалов. Сущность изобретения заключается в том, что осуществляют подачу ультразвуковых волн при помощи преобразователя перпендикулярно контактной поверхности объекта контроля с направлением волны через одну фокальную ось...
Тип: Изобретение
Номер охранного документа: 0002686488
Дата охранного документа: 29.04.2019
18.05.2019
№219.017.5b5e

Огнестойкий слоистый звукотеплоизолирующий материал

Изобретение относится к области создания слоистых звукотеплоизолирующих огнестойких материалов авиационного назначения, используемых в бортовой звукотеплоизолирующей конструкции пассажирских самолетов. Огнестойкий слоистый звукотеплоизолирующий материал содержит теплозвукоизолирующий и...
Тип: Изобретение
Номер охранного документа: 0002465145
Дата охранного документа: 27.10.2012
09.06.2019
№219.017.79c6

Способ получения высокотемпературного волокна на основе оксида алюминия

Изобретение относится к области теплозащитных материалов. Технический результат изобретения заключается в сокращении технологического цикла, повышении контролируемости процесса доведения волокнообразующего раствора до требуемой вязкости и стабильности химического состава и свойств получаемого...
Тип: Изобретение
Номер охранного документа: 0002395475
Дата охранного документа: 27.07.2010
+ добавить свой РИД