×
14.05.2019
219.017.518b

Результат интеллектуальной деятельности: Способ получения твердых сплавов с округлыми зернами карбида вольфрама для породоразрушающего инструмента

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии, в частности, к крупнозернистым твердым сплавам системы WC-Co/Ni/Fe. Может применяться для производства породоразрушающего твердосплавного инструмента. Крупнозернистые узкофракционные порошки WC с зернистостью 5-20 мкм смешивают без размола с порошками кобальта или железа или никеля в количестве 5,91-9,85% и функциональной добавкой W в количестве 0,5-2% до гомогенного состояния. Полученную смесь гранулируют, формуют в пресс-формах при давлении 100-150 МПа и подвергают вакуум-компрессионному спеканию при температурах 1380-1430°С, выдержка при максимальной температуре вакуум-компрессионного спекания составляет 50-70 мин. Стадия вакуумного спекания имеет длительность 15-25 мин, стадия спекания под давлением инертного газа в камере печи 45-50 атм. имеет длительность 35-45 мин. Получают твердый сплав с размером зерна карбида вольфрама Dcp 4-10 мкм, при этом 95% зерен имеет средний диаметр 0,5Dcp-1,75Dcp. Изобретение направлено на повышение предела прочности при изгибе, трещиностойкости и твердости крупнозернистых твердых сплавов WC-Co/Ni/Fe. 1 з.п. ф-лы, 3 ил., 6 табл., 3 пр.

Изобретение относится к области порошковой металлургии, в частности, к получению крупнозернистых твердых сплавов WC-Co/Ni/Fe, применяемых для производства породоразрушающего твердосплавного инструмента.

Известен способ (WO 2004007784 А2, опублик. 10.07.2002) получения твердых сплавов для обработки камня, бетона и асфальта, включающий получение твердого сплава из смесей порошков WC и Со (Ni) с регулируемыми магнитными свойствами и содержащими в связующей фазе наночастицы соединения CoxWyCz сх=1-7, y=1-10 и z=0-4.

Недостатком указанного изобретения является необходимость проведения длительной термической обработки сплавов, а также отсутствие требований к стереометрическим характеристикам зерен карбидной фазы получаемых твердых сплавов.

Известен способ получения твердых сплавов (US 6214287 В1 от 10.04.2001) для обработки сталей, в том числе нержавеющих, заключающийся в получении твердого сплава из плакированных порошков WC с покрытиями из Cr+Со или Со, дальнейшего мокрого смешивания без размола порошка WC с порошком кобальта и пластификатора, сушки, формования и спекания твердосплавных формовок. Отмечается, что после сушки параметр CW твердосплавной смеси должен лежать в интервале от 0,8 до 1,0 (параметр CW вводится следующим образом: CW=Ms/(wt.% Со-0,0161), где Ms - магнитное насыщение, кА/м; wt.% Со - массовое содержание кобальта в шихте, % масс). Полученные по данному способу сплавы содержат 6-12% кобальта, 0,1-0,7% хрома, средний размер зерен WC лежит в интервале 0,1-1,0 мкм.

Недостатком указанного изобретения является необходимость использования дорогостоящих и трудоемких операций плакирования Cr+Со или Со порошков WC, а также отсутствие данных о форме частиц карбида вольфрама в получаемых твердых сплавах.

Наиболее близким является способ (US 6126709 А от 03.10.2000) получения породоразрушающих твердых сплавов с повышенными термомеханическими свойствами, заключающийся в получении особо крупнозернистого твердого сплава, содержащего 88-89% WC с кобальтовой или кобаль-никелевой связующей фазой, и содержащим до 2% редкоземельных элементов (Се, Y). Полученные по данному способу твердые сплавы имеют размер зерна WC 12-20 мкм, причем максимальный размер зерна не более чем в два раза отличается от среднего (Dcp - средний размер зерна), и одновременно не более 2% зерен имеют размер меньший, чем 0,5Dcp; форма зерен характеризуется авторами как округлая.

Недостатком данного способа является необходимость использования труднодоступных дорогостоящих редкоземельных элементов, отсутствие требования по стереометрическим характеристикам округлости зерен WC в сплаве, а также присутствие в структуре сплава мелких зерен WC, уменьшающих ударную вязкость из-за снижения толщины кобальтовых прослоек.

Техническим результатом заявленного изобретения является повышение предела прочности при изгибе, трещиностойкости и твердости крупнозернистых твердых сплавов за счет формирования структуры с округлыми зернами WC, что достигается посредством использования узкофракционных порошков WC, за счет использования твердосплавных смесей с пониженным содержанием углерода, а также вакуум-компрессионным спеканием твердосплавных смесей в строго контролируемых условиях.

Технический результат заявленного изобретения достигается следующим образом.

Способ получения твердого сплава для породоразрушающего инструмента, включающий смешивание узкофракционного порошка карбида вольфрама зернистостью 5-20 мкм, порошков кобальта или железа или никеля, функциональной добавки в виде порошка вольфрама и введение органического пластификатора в соотношении (масс. %):

карбид вольфрама - 92,59-86,15;

кобальт или железо или никель - 5,91-9,85;

функциональная добавка - 0,5-2,0;

органический пластификатор - 1,0-2,0%

последующую сушку до полной отгонки размольной жидкости, грануляцию, формование и проведение двухстадийного спекания в камере печи, при котором на первой стадии осуществляют жидкофазное вакуумное спекание при температуре 1380-1450°С и давлении 101-103 Па длительностью 15-25 мин., а на второй стадии осуществляют компрессионное спекание при температуре 1380-1450°С и давлении инертного газа 4,5-5,0 МПа длительностью 35-45 мин., с получением структуры твердого сплава со средним размером зерна карбида вольфрама Dcp 4-10 мкм, при этом 95% зерен в лежат интервале 0,5⋅Dcp…1,75⋅Dcp, а не менее 80% зерен являются округлыми с коэффициентом формы F в интервале от 0,65 до 0,85.

В структуре твердого сплава не менее 10% зерен карбида вольфрама имеют коэффициент формы F более 0,85.

Способ включает в себя получение узкофракционного полностью деагломерированного порошка WC с размерами частиц 5-20 мкм, последующего получения гомогенных смесей WC и Со (или Ni или Fe) с функциональным добавками W, причем режимы смешения подбираются таким образом, чтобы не произошло размола порошка WC, и последующего контролируемого вакуум-компрессионного спекания, обеспечивающего получение структуры твердого сплава с округлыми зернами WC.

Изобретение поясняется чертежом, где на фиг. 1 показана морфология порошка WC в свободной насыпке с крупностью частиц 5-20 мкм; на фиг. 2 показана микроструктура твердого сплава WC-6%Co, содержащего округлые зерна WC с фактором формы F равным 0,73; на фиг. 3 показана микроструктура стандартного твердого WC-6%Co, содержащего ограненные зерна WC с фактором формы F менее 0,65.

Фактор (коэффициент) формы F является стереометрической характеристикой структуры и характеризует в долях единицы отличие формы зерен от круга и определяется по формуле:

F=4πS/P2,

где S - средняя площадь зерен, Р - средний периметр зерен.

Известно, что в процессе жидкофазного спекания твердых сплавов зерна карбида вольфрама приобретают равновесную форму усеченных треугольных призм. Поэтому на металлографическом шлифе зерна WC представлены n-угольниками (n≥3; чаще всего n=3 или n=4). Острые грани зерен WC в процессе деформации являются концентраторами напряжений, способствуя инициированию и распространению трещин, поэтому наличие в структуре сплава остроугольных зерен WC негативно влияет на трещиностойкость и прочность твердых сплавов. Таким образом, наличие в структуре сплава не менее 80% округлых зерен WC с фактором формы F лежащим в интервале от 0,65 до 0,85 позволяет значительно повысить предел прочности при изгибе, трещиностойкость и твердость/износостойкость крупнозернистых твердых сплавов. Другим экспериментально обоснованным способом увеличения механических свойств твердых сплавов является создание сплавов с узким распределением по размеру зерна. При фиксированном среднем размере зерна Dcp оптимальными механическими свойствами обладают крупнозернистые твердые сплавы, в которых не менее 95% всех зерен лежат в интервале 0,5⋅Dcp…1,75⋅Dcp. Сплавы с более широким распределением размеров зерен WC (например 0,2⋅Dcp…1,95⋅Dcp.) при том же среднем размере зерна Dcp имеют меньшую трещиностойкость, т.к. обладают меньшей средней толщиной кобальтовых прослоек. Создание твердых сплавов с более узким распределением размеров зерен WC (например 0,75⋅Dcp…1,25⋅Dcp) затруднено по причине неизбежно происходящей перекристаллизации в процессе жидкофазного спекания, а также это потребует использования сверхузкофракционного порошка WC, что экономически нецелесообразно.

Экспериментально установлено, что наличие в структуре твердого сплава не менее 10% зерен WC с фактором формы (F) более 0,85 приводит к существенному увеличению трещиностойкости и прочности при изгибе. Формирование особо округлых зерен с фактором формы F более 0,85 становится возможным только при использовании узкофракционного порошка WC, не содержащего частиц размером менее 5 мкм, а также при спекании твердосплавных смесей с пониженным содержанием углерода, т.к. оба этих технологических приема позволяют подавить процесс перекристаллизации при спекании. Для твердых сплавов со средним размером зерна 4-10 мкм наличие в структуре не менее 10% зерен WC с фактором формы F более 0,85 значимо увеличивает среднюю толщину кобальтовых прослоек в сплаве, что приводит к росту трещиностойкости и прочности. Также установлено, что в крупнозернистых твердых сплавах зерна WC с фактором формы F более 0,85 практически не испытывают транскристаллитного разрушения, тогда как для зерен с фактором формы менее 0,85 транскристаллитное разрушение наблюдается.

Исходный порошок WC должен содержать не менее 99,9% основной фазы, быть полностью деагломерированным, т.е. каждая отдельная частица должна представлять собой монокристалл, а его гранулометрический состав должен лежать в интервале 5-20 мкм. Такие порошки получают посредством деагломерации в шаровых вращающихся мельница или аттриторах особо крупнозернистых порошков карбида вольфрама, полученных по высокотемпературной технологии (температура процесса карбидизации более 2000°С) с последующей воздушной классификацией. Это позволяет удалить частицы WC с размерами менее 5 мкм и более 20 мкм. Использование порошков WC с более широким гранулометрическим распределением нецелесообразно, поскольку наличие в исходном порошке частиц с размерами менее 5 мкм приводит к снижению трещиностойкости сплава, а также интенсифицирует процесс перекристаллизации на стадии жидкофазного спекания, что способствует формированию в структуре твердого сплава зерен WC ограненной формы. Наличие в исходном порошке WC частиц с размерами более 20 мкм приводит к снижению прочностных характеристик сплава, поскольку известно, что крупные зерна WC обладают меньшей прочностью.

В качества пластификатора для смесей WC с порошками кобальта или железа или никеля используют различные органические вещества (например, парафин, полиэтиленгликоль и др.) в количестве 1,0-2,0% от массы смеси. Введение пластификатора осуществляется следующим образом: в предварительно нагретом до 50±5°С гексане растворяется необходимое количество пластификатора, а затем полученный раствор выливается в твердосплавную смесь и перемешивается. Затем осуществляется отгонка гексана в вакуумном сушильном шкафу.

После сушки пластифицированная твердосплавная смесь нагревается до температуры 40°С и продавливается через сетку крупностью 30 меш, что позволяет получить гранулированную твердосплавную смесь, пригодную для дальнейшей операции формования

Гранулированную твердосплавную смесь формуют в стальных пресс-формах при нагрузке 100-150 МПа по двухсторонней схеме приложения нагрузки с выдержкой при максимальном давлении в течение 3 с. С целью уменьшения трения перед прессованием стенки пресс-формы предварительно смазываются стеаратом цинка Zn(C18H35O2)2. Извлечение формовки из пресс-формы осуществляется при давлении 50 МПа.

Консолидация твердых сплавов проводится путем вакуум-компрессионного спекания при максимальной температуре процесса в интервале 1380-1430°С. Отгонка связующего проводится непосредственно в цикле вакуум-компрессионного спекания при температуре 300°С в течение 3 ч., остаточное давление в камере печи при этом составляет около 1000 Па. При максимальной температуре спекания 1380-1430°С в течение 15-25 минут в камере печи поддерживается остаточное давление в 500 Па (стадия жидкофазного вакуумного спекания), после чего осуществляется напуск аргона до давления 5 МПа и проводится выдержка в течение 35-45 мин (стадия компрессионного спекания). По завершению стадии компрессионного спекания образцы охлаждаются вместе с печью до комнатной температуры со скоростью охлаждения 5-10°С/мин.

Для получения твердых сплавов берут порошки карбида вольфрама, кобальта или никеля или железа и вольфрама. Основные характеристики порошков приведены в таблице 1.

Экспериментально обосновано оптимальное содержание углерода в твердом сплаве, которое составляет 97-99% от стехиометрического содержания в карбиде вольфрама (для твердых сплавов стехиометрическое содержание углерода вычисляется по формуле 6,127%*CWC, где 6,127% - содержание углерода в стехиометрическом соединении WC, CWC - доля карбида вольфрама в сплаве). Пониженное содержание углерода в сплаве обеспечивается за счет введения в твердосплавную шихту порошка функциональный добавки W в количестве 0,5-2,0%. Пониженное содержание углерода в сплаве также подавляет процесс перекристаллизации через жидкую фазу зерен WC, что позволяет получить сплавы с узким распределением по размеру зерна, а также способствует формированию в структуре округлых зерен WC с коэффициентом формы более 0,65 (см. фиг. 2 и фиг. 3). При меньших содержаниях углерода (менее 97% от стихометрического) в структуре сплава появляется фазы типа (W,Me)6C (где Me - Со или Ni или Fe), наличие которых резко снижает прочность и трещиностойкость сплава. Повышенное содержание углерода приводит к формированию в структуре сплава избыточных выделений графита, снижающих механические свойства.

Также экспериментально обоснованы оптимальные длительности вакуум-компрессионного спекания твердых сплавов, обеспечивающих формирование сплавов с округлыми зернами и высокими механическими характеристиками. Длительность стадии вакуумного спекания при максимальной температуре должна находиться в интервале 15-25 мин, длительность стадии компрессионного спекания при давлении инертного газа в камере печи 40-50 атм. должна составлять 35-45 мин. Использование этих экспериментально обоснованных длительностей вакуум-компрессионного спекания позволяет получать беспористые сплавы с округлыми зернами карбида вольфрама. Меньшие времена спекания приводят к неполному удалению пористости (более 0,5% об.), что негативно влияет на механические и эксплуатационные свойства сплава. При длительности спекания более 45 минут фактора формы зерен карбида вольфрама снижается за счет формирования равновесной огранки, что тоже снижает механические свойства.

Примеры по обоснованию режимов получения твердых сплавов с округлыми зернами карбида вольфрама сведены в таблицах 2-6

Пример 1 (таблица 2, пример 2)

Для изготовления твердого сплава берется порошок карбида вольфрама зернистостью 5-20 мкм, причем содержание основной фракции составляет не менее 95% (фиг. 1).

Смешивание порошка WC с порошками 6,045%) кобальта и 1% вольфрама проводится в ШВМ при соотношении шары: материал = 1:2 в течение 8 ч в среде гексана с добавками 1,5% масс парафина. После сушки пластифицированная твердосплавная смесь нагревается до температуры 40°С и продавливается через сетку крупностью 30 меш.

Формование проводится в стальной пресс-форме при 100 МПа по двухсторонней схеме приложения нагрузки с выдержкой при максимальном давлении 3 с. С целью уменьшения трения перед прессованием стенки пресс-формы предварительно смазываются стеаратом цинка Zn(C18H35O2)2. Извлечение формовки из пресс-формы осуществляется при давлении 50 МПа.

Вакуум-компрессионное спекание проводится при максимальной температуре 1420°С. Отгонка связующего осуществляется непосредственно в цикле вакуум-компрессионного спекания при температуре 300°С в течение 3 ч., остаточное давление в камере печи при этом составляет около 1000 Па. При максимальной температуре спекания (1420°С) в течение 20 минут в камере печи поддерживается остаточное давление в 500 Па (стадия жидкофазного вакуумного спекания), после чего осуществляется напуск аргона до давления 5 МПа и проводится выдержка в течение 40 мин (стадия компрессионного спекания). По завершению стадии компрессионного спекания образцы охлаждаются с печью до комнатной температуры со скоростью охлаждения 7°С/мин.

Полученный твердый сплав имеет следующие свойства:

Средний размер зерна Dcp=6,1 мкм; доля зерен в интервале 0,5⋅Dcp…1,75⋅Dcp составляет 96%; доля зерен с коэффициентом формы F в интервале 0,65…0,85 составляет 89%; предел прочности при испытаний на изгиб σизг=2450 МПа; твердость по Виккерсу HV=12,5 ГПа; трещиностойкость по Палмквисту K1c=14,8 МПа (структура сплава представлена на фиг. 2);

Пример 2 (таблица 4, пример 1)

Для изготовления твердого сплава берется порошок карбида вольфрама зернистостью 5-20 мкм, причем содержание основной фракции составляет не менее 95%.

Смешивание порошка WC с 9,65% никеля и 2,0% W (данное количество функциональной добавки с учетом частичного обезуглероживания сплава из-за присутствия кислорода в никелевом порошке обеспечивает содержание углерода в сплаве в 97% от стехиометрического) проводится в ШВМ при соотношении масс шары: материал = 1:2 в течение 8 часов в среде гексана с добавкой 1,5% масс, полиэтиленгликоля. После сушки пластифицированная твердосплавная смесь нагревается до температуры 40°С и продавливается через сетку крупностью 30 меш.

Формование проводится в стальной пресс-форме при 120 МПа по двухсторонней схеме приложения нагрузки с выдержкой при максимальном давлении 3 с. С целью уменьшения трения перед прессованием стенки пресс-формы предварительно смазываются стеаратом цинка Zn(C18H35O2)2. Извлечение формовки из пресс-формы осуществляется при давлении 50 МПа.

Вакуум-компрессионное спекание проводится при максимальной температуре 1410°С. Отгонка связующего осуществляется непосредственно в цикле вакуум-компрессионного спекания при температуре 300°С в течение 3 ч., остаточное давление в камере печи при этом составляет около 1000 Па. При максимальной температуре спекания (1410°С) в течение 20 минут в камере печи поддерживается остаточное давление в 500 Па (стадия жидкофазного вакуумного спекания), после чего осуществляется напуск аргона до давления 5 МПа и проводится выдержка в течение 40 мин (стадия компрессионного спекания). По завершению стадии компрессионного спекания образцы охлаждаются с печью до комнатной температуры со скоростью охлаждения 7°С/мин.

Полученный сплав имеет следующие свойства:

Содержание углерода от стехиометрического - 97%; доля зерен в интервале 0,5⋅Dcp…1,75⋅Dcp - 96%; доля зерен с коэффициентом формы F в интервале 0,65…0,85 составляет 89%; предел прочности при испытаний на изгиб σизг=2150 МПа; твердость по Виккерсу HV=9,8 ГПа; трещиностойкость по Палмквисту K1c=24,2 МПа .

Пример 3 (таблица 6, пример 3)

Для изготовления твердого сплава берется порошок карбида вольфрама зернистостью 5-20 мкм, причем содержание основной фракции составляет не менее 95%.

Смешивание порошка WC с 9,78% железа и 0,7% W (данное количество функциональной добавки с учетом частичного обезуглероживания сплава из-за присутствия кислорода в железном порошке обеспечивает содержание углерода в сплаве в 98% от стехиометрического) проводится в ШВМ при соотношении масс шары: материал = 1:2 в течение 8 часов в среде гексана с добавками 1,5% масс парафина. После сушки пластифицированная твердосплавная смесь нагревается до температуры 40°С и продавливается через сетку крупностью 30 меш.

Формование проводится в стальной пресс-форме при 130 МПа по двухсторонней схеме приложения нагрузки с выдержкой при максимальном давлении 3 с. С целью уменьшения трения перед прессованием стенки пресс-формы предварительно смазываются стеаратом цинка Zn(C18H35O2)2. Извлечение формовки из пресс-формы осуществляется при давлении 50 МПа.

Вакуум-компрессионное спекание проводят при максимальной температуре 1430°С. Отгонка связующего осуществляется непосредственно в цикле вакуум-компрессионного спекания при температуре 300°С в течение 3 ч., остаточное давление в камере печи при этом составляет около 1000 Па. При максимальной температуре спекания (1430°С) в течение 25 минут в камере печи поддерживается остаточное давление в 500 Па (стадия жидкофазного вакуумного спекания), после чего осуществляется напуск аргона до давления 5 МПа и проводится выдержка в течение 45 мин (стадия компрессионного спекания). По завершению стадии компрессионного спекания образцы охлаждаются вместе с печью до комнатной температуры со скоростью охлаждения 7°С/мин.

Полученный сплав имеет следующие свойства:

Содержание углерода от стехиометрического - 98%; доля зерен в интервале 0,5⋅Dcp…1,75⋅Dcp=96%; доля зерен с коэффициентом формы F в интервале 0,65…0,85 составляет 84%; предел прочности при испытаний на изгиб σизг=1690 МПа; твердость по Виккерсу HV=9,1 ГПа; трещиностойкость по Палмквисту К=22,1 МПа .

В таблице 2 приведены свойства твердых сплавов WC-Co, полученных вакуум-компрессионным спеканием, с различным средним значением размера зерна WC, различной долей зерен с коэффициентом формы F в интервале 0,65…0,85 и различной долей зерен в интервале 0,5⋅Dcp…1,75⋅Dcp.

В таблице 3 приведены свойства твердых сплавов WC-6%Co, полученных вакуум-компрессионным спеканием, содержащих в структуре различную долю зерен WC с коэффициентом формы F более 0,85.

В таблице 4 приведены свойства твердых сплавов WC-10%Ni, полученных вакуум-компрессионным спеканием, с различным содержанием функциональной добавки W

В таблице 5 приведены свойства твердых сплавов WC-Fe, полученных вакуум-компрессионным спеканием, для производства которых использовался порошок WC различной зернистости.

В таблице 6 приведены свойства твердых сплавов WC-Fe, полученных при различных длительностях стадии жидкофазного вакуум-компрессионного спекания твердосплавных формовок.


Способ получения твердых сплавов с округлыми зернами карбида вольфрама для породоразрушающего инструмента
Способ получения твердых сплавов с округлыми зернами карбида вольфрама для породоразрушающего инструмента
Источник поступления информации: Роспатент

Showing 11-20 of 322 items.
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3813

Способ интенсификации сорбции благородных металлов с помощью нанодисперсного сорбента

Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом...
Тип: Изобретение
Номер охранного документа: 0002582838
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ad5

Емкостная моп диодная ячейка фотоприемника-детектора излучений

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые...
Тип: Изобретение
Номер охранного документа: 0002583955
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cdc

Биполярная ячейка координатного фотоприемника - детектора излучений

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника -...
Тип: Изобретение
Номер охранного документа: 0002583857
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3fca

Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки

Изобретение относится к области металлургии конструкционных сталей и предназначено для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь содержит, в мас.%: С - 0,05-0,07, Cr - 18,0-20,0, Ni - 5,0-7,0, Μn - 9,0-11,0, Mo - 1,4-1,8,...
Тип: Изобретение
Номер охранного документа: 0002584315
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.43d8

Способ обработки низколегированных медных сплавов

Изобретение относится к области обработки специальных проводниковых сплавов, в частности к получению низколегированных медных сплавов, и может быть использовано в электротехнике для изготовления электродов сварочных машин, контактных проводов для электрофицированного транспорта, коллекторных...
Тип: Изобретение
Номер охранного документа: 0002585606
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43ed

Литейная форма для центробежной заливки крупногабаритных фасонных отливок сложной формы из жаропрочных и химически активных сплавов

Изобретение может быть использовано при получении крупногабаритных литых деталей летательных аппаратов и атомной техники, работающих под действием высоких нагрузок. Литейная форма содержит металлический поддон с центрирующим устройством, графитовые закладные элементы и формообразующие...
Тип: Изобретение
Номер охранного документа: 0002585604
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.45a4

Электропривод

Изобретение относится к электротехнике, в частности к электроприводу переменного тока с режимом динамического торможения асинхронного двигателя. При отказе механического тормоза при аварийной остановке применяется электрический тормоз - электропривод переходит в режим регулируемого...
Тип: Изобретение
Номер охранного документа: 0002586630
Дата охранного документа: 10.06.2016
Showing 11-20 of 29 items.
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
20.08.2016
№216.015.4e67

Композиция для изготовления режущего инструмента для стали и чугуна

Изобретение относится к порошковой металлургии и может быть использовано для изготовления режущего инструмента. Композиция содержит сверхтвердый материал, включающий смесь порошков кубического нитрида бора и алмаза, при следующем соотношении компонентов, мас. %: кубический нитрид бора 20-60,...
Тип: Изобретение
Номер охранного документа: 0002595000
Дата охранного документа: 20.08.2016
25.08.2017
№217.015.a5b0

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению литых шихтовых заготовок электродов из высоколегированных сплавов на основе алюминидов никеля, и может быть использовано для центробежной атомизации материала электродов и получения гранул для применения в...
Тип: Изобретение
Номер охранного документа: 0002607857
Дата охранного документа: 20.01.2017
29.12.2017
№217.015.f664

Способ получения электродов из сплавов на основе алюминида титана

Изобретение относится к области специальной металлургии, в частности к получению электродов из сплавов на основе алюминида титана. Способ включает получение литого интерметаллидного полуфабриката методом центробежного СВС-литья с использованием реакционной смеси при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002630157
Дата охранного документа: 05.09.2017
04.04.2018
№218.016.2ff1

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению электродов из высоколегированных сплавов на основе алюминидов никеля. Способ включает получение полуфабриката методом центробежного СВС-литья с использованием реакционной смеси, содержащей оксид никеля, алюминий,...
Тип: Изобретение
Номер охранного документа: 0002644702
Дата охранного документа: 13.02.2018
03.03.2019
№219.016.d278

Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля

Изобретение относится к области порошковой металлургии. Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150...
Тип: Изобретение
Номер охранного документа: 0002681022
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.ef3a

Биосовместимые многокомпонентные наноструктурные покрытия для медицины

Изобретение относится к медицинской технике, а именно к биосовместимым износостойким наноструктурным тонкопленочным материалам, используемым в качестве покрытий при изготовлении имплантатов, работающих под нагрузкой: ортопедические и стоматологические протезы, зубные коронки, имплантаты,...
Тип: Изобретение
Номер охранного документа: 0002281122
Дата охранного документа: 10.08.2006
29.03.2019
№219.016.f380

Псевдоупругий биосовместимый функционально-градиентный материал для костных имплантов и способ его получения

Изобретение относится к области ортопедической импланталогии и может быть использовано для изготовления имплантатов (штифтов), внедряемых в костную ткань. Псевдоупругий биосовместимый функционально-градиентный материал для костных имплантов в объеме состоит из сплава титана, ниобия и тантала,...
Тип: Изобретение
Номер охранного документа: 0002302261
Дата охранного документа: 10.07.2007
19.04.2019
№219.017.32d3

Связка на основе меди для изготовления алмазного инструмента

Изобретение относится к порошковой металлургии, к способам получения изделий из твердосплавных материалов. Изобретение может быть использовано в качестве связок при изготовлении алмазного режущего инструмента для стройиндустрии и камнеобработки. Связка включает медь, железо, кобальт, олово,...
Тип: Изобретение
Номер охранного документа: 0002432247
Дата охранного документа: 27.10.2011
+ добавить свой РИД