×
09.05.2019
219.017.5105

Результат интеллектуальной деятельности: СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, в частности к составам алюминиевых сплавов, и может быть использовано в разработке конструкционных материалов для изготовления изделий авиакосмической техники, в том числе и работающих при криогенных температурах. Сплав также может использоваться в качестве присадочного материала при изготовлении сварных конструкций выше названных изделий из деформированных и литейных алюминиевых сплавов систем Al-Cu, Al-Cu-Li, а также для сварки комбинированных лито-деформированных конструкций. Сплав на основе алюминия и изделие, выполненное из него, содержат следующие компоненты, мас.%: медь 6,0 - 8,5, марганец 0,1 - 0,4, титан 0,05 - 0,2, цирконий 0,08 - 0,25, скандий 0,1 - 0,4, по крайней мере три компонента, выбранных из группы, содержащей: бор 0,0005 - 0,005, бериллий 0,0001 - 0,001, лантан 0,05 - 0,2, иттрий 0,05 - 0,15, церий 0,05 - 0,15, алюминий - остальное. Техническим результатом изобретения является повышение пластичности и трещиностойкости как самого сплава, так и сварных соединений сплавов типа 1460, выполненных с применением данного сплава в качестве присадочного материала, что обеспечивает надежность и долговечность. 2 с.п. ф-лы, 2 табл.

Изобретение относится к области металлургии алюминиевых сплавов. Такие сплавы могут быть использованы как конструкционные материалы для изготовления изделий авиакосмической техники, в том числе и работающих при криогенных температурах. Сплав может использоваться в качестве присадочного материала при изготовлении сварных конструкций вышеназванных изделий из деформированных и литейных алюминиевых сплавов систем Аl-Сu, Al-Сu-Li, а также для сварки комбинированных лито-деформированных конструкций.

Известен сплав на основе алюминия /1/, содержащий, мас.%:
Медь - 5,8-6,8
Марганец - 0,2-0,4
Цирконий - 0,1-0,25
Ванадий - 0,05-0,15
Титан - 0,02-0,1
Алюминий - Остальное
Сплав имеет ряд недостатков. Прочность сварного соединения невысока и составляет 250-270 МПа, при низком уровне пластичности и ударной вязкости (угол загиба сварного соединения меньше 40o, ударная вязкость по сварному шву примерно 150 кДж/м2). Склонность к образованию горячих трещин при сварке, определяемая по пробе МВТУ, высокая (Акр составляет 0,09 м/час при сварке без присадки и 0,15 м/час при сварке с использованием присадочного материала того же состава). Все это ограничивает применение сплава в высоконагруженных сварных конструкциях.

Наиболее близким к предложенному сплаву по технической сущности и достигаемому эффекту является сплав /2/, принятый за прототип, следующего химического состава, мас.%:
Медь - 5,0-5,5
Марганец - 0,2-0,6
Титан - 0,1-0,4
Цирконий - 0,1-0,4
Хром - 0,1-0,4
Кадмий - 0,05-0,25
Стронций или барий - 0,01-0,1
Алюминий - Остальное
Недостатками сплава являются пониженные значения пластичности и трещиностойкости, как самого сплава, так и сварных соединений, выполненных с применением данного сплава в качестве присадочного материала. Значения критической скорости деформации (Акр) составляют 0,15 м/час, что совершенно недостаточно для получения качественных и надежных сварных соединений.

Изготовление сварных конструкций из этого сплава связано с возникновением большого количества дефектов типа горячих трещин, что значительно снижает показатели надежности и долговечности изделия.

Снижение пластичности и трещиностойкости связано с образованием грубых нерастворимых фаз AlCuCd.

Технической задачей данного изобретения является разработка состава алюминиевого сплава, обеспечивающего повышение пластичности и трещиностойкости, как самого сплава, так и сварных соединений сплавов типа 1460, выполненных с применением данного сплава в качестве присадочного материала.

Изделия из этого сплава, в том числе и сварные конструкции, должны иметь повышенные характеристики надежности и долговечности.

Для достижения поставленной технической задачи предлагается сплав на основе алюминия и изделие, выполненное из него. Сплав содержит медь, марганец, титан, цирконий, в который дополнительно введены скандий и по крайней мере три компонента, выбранные из группы, содержащей: бор, бериллий, лантан, иттрий, церий, при следующем соотношении компонентов, мас.%:
Медь - 6,0-8,5
Марганец - 0,1-0,4
Титан - 0,05-0,2
Цирконий - 0,08-0,25
Скандий - 0,1-0,4
и по крайней мере три компонента, выбранные из группы, содержащей, мас. %:
Бор - 0,0005-0,005
Бериллий - 0,0001-0,001
Лантан - 0,05-0,2
Иттрий - 0,05-0,15
Церий - 0,05-0,15
Алюминий - Остальное
Изделие из сплава на основе алюминия, отличающееся тем, что оно выполнено из сплава следующего химического состава, мас.%:
Медь - 6,0-8,5
Марганец - 0,1-0,4
Титан - 0,05-0,2
Цирконий - 0,08-0,25
Скандий - 0,1-0,4
и по крайней мере три компонента, выбранных из группы содержащей:
Бор - 0,0005-0,005
Бериллий - 0,0001-0,001
Лантан - 0,05-0,2
Иттрий - 0,05-0,15
Церий - 0,05-0,15
Алюминий - Остальное
При заявленном содержании и соотношении компонентов в предлагаемом сплаве образуются вторичные выделения дисперсных частиц интерметаллидов различного состава (в зависимости от системы легирования), содержащих алюминий, скандий, лантан, бор, иттрий, церий. Образуется мелкозернистая недендритная структура металла шва и зоны сплавления за счет наличия большого числа центров кристаллизации. Кроме того, эти элементы оказывают положительное влияние на структуру границ зерен при кристаллизации шва, что приводит к замене хрупкого зернограничного разрушения металла при динамических нагрузках на вязкое транскристаллитное. В итоге, применение данного материала в качестве основного материала и присадочного для сварки сплавов типа 1460 позволяет повысить значения трещиностойкости, ударной вязкости и пластичности сварного соединения. Изделия из этого сплава обладают повышенной надежностью и работоспособностью.

Для осуществления конкретного примера были выплавлены сплавы, состав которых приведен в таблице I. Слитки размером ⊘ 70 мм/300 мм после гомогенизации при температуре 525oС, 12 ч и механической обработки на размер ⊘ 60 мм х 250 мм, подвергались горячему прессованию при температуре 400oС на прутки диаметром 6 мм. Затем проводилось волочение с промежуточными отжигами до получения проволоки диаметром 2 мм. Свойства присадочных материалов оценивались при сварке листов сплава 1460 толщиной 2,5 мм. Склонность к образованию горячих трещин при сварке определялась по методике МВТУ им. Н.Э. Баумана на установке ЛТПI-6 с принудительной поперечной растягивающей деформацией образцов в процессе сварки, которая проводилась с присадочной проволокой по режиму: Jсв=140 А. Аргоно-дуговую сварку образцов для механических испытаний проводили на автомате АДСВ-7 с исследуемыми присадочными материалами. Режим сварки: Jсв= 140 А, Vсв= 18 м/ч. Для сравнения аналогичные испытания были проведены для сплава-прототипа, который испытывался как основной и присадочный материал.

Пластичность самого сплава оценивалась по величине относительного удлинения (δ%), которое определялось на листовом материале, полученном по следующей технологии. Из слитка ⊘70 мм после гомогенизирующего отжига прессовалась полоса сечением 40 • 15 мм при 440oС, затем она прокатывалась при 400oС в поперечном направлении. Листы закаливались с температуры 535oС в воду, затем после правки подвергали старению при 180oС в течение 20 ч.

В таблице 2 приведены механические свойства сварных соединений. Как видно из полученных данных, применение заявляемого состава в качестве присадочного материала позволяет повысить трещиностойкость, ударную вязкость и пластичность сварного соединения сплава 1460 примерно на 40-60%. Пластичность заявляемого сплава также повышается.

Применение предлагаемого сплава к качестве присадочного материала позволит использовать новые сверхлегкие алюминиевые сплавы системы Al-Сu-Li в сварных конструкциях авиакосмической техники, повысить их эксплуатационную надежность и снизить вес изделия примерно на 15%.

Литература
1. OCT 1-90048-90 "Сплавы алюминиевые деформируемые. Марки."
2. Патент РФ 1678080, С 22 С 21/12.

1.Сплавнаосновеалюминия,содержащиймедь,марганец,титан,цирконий,отличающийсятем,чтовнегодополнительновведеныскандийипокрайнеймеретрикомпонента,выбранныхизгруппы,содержащейбор,бериллий,лантан,иттрий,церий,приследующемсоотношениикомпонентов,мас.%:Медь-6,0-8,5Марганец-0,1-0,4Титан-0,05-0,2Цирконий-0,08-0,25Скандий-0,1-0,4ипокрайнеймеретрикомпонента,выбранныхизгруппы,содержащейБор-0,0005-0,005Бериллий-0,0001-0,001Лантан-0,05-0,2Иттрий-0,05-0,15Церий-0,05-0,15Алюминий-Остальное2.Изделиеизсплаванаосновеалюминия,отличающеесятем,чтооновыполненоизсплаваследующегохимическогосостава,мас.%:Медь-6,0-8,5Марганец-0,1-0,4Титан-0,05-0,2Цирконий-0,08-0,25Скандий-0,1-0,4ипокрайнеймеретрикомпонента,выбранныхизгруппы,содержащейБор-0,0005-0,005Бериллий-0,0001-0,001Лантан-0,05-0,2Иттрий-0,05-0,15Церий-0,05-0,15Алюминий-Остальное1
Источник поступления информации: Роспатент

Showing 11-11 of 11 items.
19.06.2019
№219.017.8c32

Способ азотирования жаропрочных сплавов на никелевой, железоникелевой, никель-кобальтовой и кобальтовой основе

Способ азотирования жаропрочных сплавов на никелевой, железоникелевой, никель-кобальтовой и кобальтовой основе включает продувку потоком азота, нагрев до 1150-1250°С, последующую выдержку при этой температуре в потоке азота, который подается со скоростью 3-10 л/мин, и охлаждение со скоростью не...
Тип: Изобретение
Номер охранного документа: 02164964
Дата охранного документа: 10.04.2001
Showing 11-20 of 62 items.
20.03.2019
№219.016.e4a3

Способ термической обработки отливки из жаропрочного монокристаллического никелевого сплава

Изобретение относится к области металлургии, а именно к термической обработке отливок из многокомпонентных жаропрочных сплавов на никелевой основе с монокристаллической структурой, предназначенных преимущественно для производства лопаток ГТД и ГТУ в авиационной и энергетической промышленностях....
Тип: Изобретение
Номер охранного документа: 02230821
Дата охранного документа: 20.06.2004
20.03.2019
№219.016.e4dd

Способ термомеханической обработки титановых сплавов

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в авиационной технике. Предложен способ, включающий многократный нагрев титановых сплавов до температуры выше и ниже температуры полиморфного превращения и...
Тип: Изобретение
Номер охранного документа: 02219280
Дата охранного документа: 20.12.2003
20.03.2019
№219.016.e4f1

Многослойное молниезащитное покрытие

Изобретение относится к средствам защиты от поражения молнией, в том числе на летательных аппаратах, и касается многослойного молниезащитного покрытия, состоящего из диэлектрического слоя, выполненного из полимерной отвержденной матрицы, и токопроводящего слоя на основе высокопрочных углеродных...
Тип: Изобретение
Номер охранного документа: 02217320
Дата охранного документа: 27.11.2003
20.03.2019
№219.016.ea0e

Способ получения покрытия для защиты от коррозии стальных деталей

Изобретение относится к области машиностроения, а именно к способам получения покрытий для защиты от коррозии стальных деталей. Предлагаемый способ включает следующие операции: обезжиривание детали, активирование в растворах кислот, нанесение на нее цинкового покрытия в щелочном цинкатном...
Тип: Изобретение
Номер охранного документа: 02177055
Дата охранного документа: 20.12.2001
10.04.2019
№219.017.0a5f

Способ обработки поверхности металлических изделий

Изобретение может быть использовано в авиационном и энергетическом турбиностроении для ионного травления с целью контроля макроструктуры, прецизионного удаления поверхностных слоев или повышения служебных характеристик материалов. Способ включает предварительную очистку поверхности, размещение...
Тип: Изобретение
Номер охранного документа: 0002165474
Дата охранного документа: 20.04.2001
10.04.2019
№219.017.0a60

Способ защиты стальных деталей машин от солевой коррозии

Способ защиты стальных деталей машин от солевой коррозии включает последовательное осаждение в вакууме на поверхность пера первого слоя конденсированного покрытия толщиной 6-25 мкм из сплава на основе никеля, содержащего, мас.%: 16-28 хрома, 16-30 кобальта, 8 -13,5 алюминия, 0,05 - 0,6 иттрия,...
Тип: Изобретение
Номер охранного документа: 0002165475
Дата охранного документа: 20.04.2001
10.04.2019
№219.017.0a7c

Способ испарения и конденсации токопроводящих материалов

Изобретение может быть использовано в авиационном и энергетическом газотурбиностроении. Способ включает вакуумно-дуговое испарение токопроводящего материала при наложении на поверхность испарения магнитного поля и при радиационном охлаждении испаряемого материала при температуре его нагрева на...
Тип: Изобретение
Номер охранного документа: 0002164549
Дата охранного документа: 27.03.2001
10.04.2019
№219.017.0a7d

Способ получения диффузионного алюминидного покрытия на изделии

Способ получения диффузионного алюминидного покрытия на изделии включает накопление на поверхности изделия элементов, легирующих покрытие, причем удельный прирост массы ΔМ каждого из элементов на единицу поверхности изделия выбирают из соотношения ΔM = δρh, гдe δ - мaccoвaя доля i-го...
Тип: Изобретение
Номер охранного документа: 02164965
Дата охранного документа: 10.04.2001
10.04.2019
№219.017.0afb

Никелевый жаропрочный сплав для монокристального литья

Никелевый жаропрочный сплав для монокристального литья содержит следующие компоненты, мас.%: хром 2,0-3,0, кобальт 9,5-12,0, алюминий 5,5-6,2, вольфрам 0,1-1,8, молибден 1,6-2,4, тантал 7,8-10,0, рений 7,8-10,0, церий 0,002-0,02, лантан 0,002-0,02, неодим 0,0005-0,01, иттрий 0,002-0,02, углерод...
Тип: Изобретение
Номер охранного документа: 02153021
Дата охранного документа: 20.07.2000
10.04.2019
№219.017.0b02

Литейный жаропрочный сплав на основе никеля

Литейный жаропрочный сплав на основе никеля содержит следующие компоненты, мас. %: хром 6,5-10,5, кобальт 6,0-10,0, молибден 2,7-4,0, алюминий 4,8-5,7, титан 4,2-4,7, углерод 0,06-0,20, бор 0,005-0,015, цирконий 0,01-0,02, вольфрам 1,0-1,8, ниобий 0,5-1,0, церий 0,002-0,015, один элемент из...
Тип: Изобретение
Номер охранного документа: 02153020
Дата охранного документа: 20.07.2000
+ добавить свой РИД