×
09.05.2019
219.017.5042

Результат интеллектуальной деятельности: СПОСОБ СФЕРОДИНАМИЧЕСКОГО ОБЪЕМНОГО НАНОСТРУКТУРИРОВАНИЯ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА

Вид РИД

Изобретение

Аннотация: Изобретения относятся к обработке давлением, в частности к получению деталей с заданным уровнем эксплуатационных характеристик путем холодного пластического деформирования заготовок. Заготовку размещают на сферодинамическом модуле и прикладывают к ней от пуансона усилия осадки и обкатывания. Модуль имеет возможность вращения и качания в вертикальной плоскости. Пуансон имеет цилиндрическую форму и рабочую поверхность, выполненную по логарифмической спирали Бернулли. Усилие осадки прикладывают поэтапно с обеспечением перевода заготовки в состояние деформационного резонанса и нарушения ее контакта с модулем. Степень деформации заготовки по высоте на первом этапе осадки ε определяют из соотношения ε=(0,6…0,8)ε, где ε - степень деформации материала заготовки, соответствующая нижнему пределу реализации эффекта Баушингера. Степени осадки на всех последующих этапах ε определяют из соотношения ε=(0,2…0,3)ε, где ε - степень деформации, соответствующая верхнему пределу реализации эффекта Баушингера. Затем начинают процесс обкатывания заготовки. В результате обеспечивается возможность регламентированно реализовать прохождение волновой природы пластической деформации на наноуровень обрабатываемого материала. 2 н.п. ф-лы, 4 ил., 1 табл.

Группа изобретений относится к области обработки материалов давлением, в частности к способам и устройствам для холодного пластического деформирования и получения деталей с заданным уровнем эксплуатационных характеристик, и может быть использовано при изготовлении:

- нового поколения датчиков измерения физических параметров в химически активных средах, при сверхмалых и сверхвысоких давлениях, а также при высоких и криогенных температурных;

- определяющих деталей жидкостных реактивных двигателей (камер сгорания);

- нового поколения определяющих деталей видео- и аудиоаппаратуры (герконы - магнитоуправляемые контакты), позволяющих создать на базе одного элемента взаимоисключающие физические характеристики: «высокая упругость - коррозионная стойкость - высокая магнитная индукция B5 - стабильная максимальная магнитная проницаемость µmax».

Известны способ и устройство для обработки материалов: способ сферодинамического объемного наноструктурирования материалов, включающий размещение заготовки на сферодинамическом модуле и приложение к ней от пуансона усилий осадки и обкатывания и устройство для сферодинамического объемного наноструктурирования материалов, содержащее пуансон и сферодинамический модуль (пат. РФ №2282519, B21J 5/06, 27.08.2006 - наиболее близкий аналог для способа и устройства).

Недостатками известных способа и устройства являются:

- невозможность в процессе деформирования заготовки регламентированно переводить деформирующую систему в состояние деформационного резонанса многократно, т.е. периодически создавать в процессе деформирования заготовки условия реализации эффекта Баушингера («запоминание» металлом истории его нагружения), что обуславливает периодические совпадения частотой колебаний заготовки и всей деформирующей системы (деформационный резонанс).

Техническим результатом настоящего изобретения является разработка способа и устройства, позволяющих регламентированно реализовать прохождение волновой природы пластической деформации в виде пластических роторов (вихрей), проникающих на наноуровень обрабатываемого материала (10-9 м) и формирующих феноменологический комплекс физико-механических характеристик.

Указанный технический результат обеспечивается тем, что в способе сферодинамического объемного наноструктурирования материалов, включающем размещение заготовки на сферодинамическом модуле и приложение к ней от пуансона усилий осадки и обкатывания, новым является то, что усилие осадки прикладывают поэтапно с обеспечением перевода заготовки в состояние деформационного резонанса и нарушения ее контакта со сферодинамическим модулем, при этом степень деформации заготовки по высоте на первом этапе осадки ε1 определяют из соотношения ε1=(0,6…0,8)εδ1,

где εδ1 - степень деформации материала заготовки, соответствующая нижнему пределу реализации эффекта Баушингера, %,

степени осадки заготовки на всех последующих этапах осадки ε2 определяют из соотношения ε2=(0,2…0,3)εδ2,

где εδ2 - степень деформации материала заготовки, соответствующая верхнему пределу реализации эффекта Баушингера, %,

а обкатывание заготовки начинают в момент перевода ее в состояние деформационного резонанса и нарушения контакта заготовки и сферодинамического модуля.

В устройстве для сферодинамического объемного наноструктурирования материалов, содержащем пуансон и сферодинамический модуль, новым является то, что пуансон выполнен цилиндрической формы и с рабочей поверхностью, выполненной по логарифмической спирали Бернулли, пуансон и сферодинамический модуль установлены с возможностью вращения и качания в вертикальной плоскости, причем вертикальная ось сферодинамического модуля смещена в горизонтальной плоскости относительно вертикальной оси пуансона на величину е, определяемую из соотношения (3…4)δ,

где δ - шаг логарифмической спирали Бернулли рабочей поверхности пуансона, мм.

Способ сферодинамического объемного наноструктурирования материалов и устройство для его осуществления представлены следующим графическим материалом, где на:

фиг.1 - принципиальная схема устройства для сферодинамического объемного наноструктурирования материалов;

фиг.2 - принципиальная схема сферодинамического объемного наноструктурирования материалов;

фиг.3 - структурное состояние металла наноструктурированного полуфабриката;

фиг.4 - текстурное состояние металла наноструктурированного полуфабриката.

Устройство содержит составную платформу 1 с полостью в нижней части, в которой установлена полая опора 2 с размещенным упругим элементом 3. Верхняя часть платформы соединена с подвижной траверсой 4 колоннами 5, на одной из которых на упругих элементах 6 размещен ложемент 7, на котором устанавливают заготовку 8, фиксируя ее на сферодинамическом модуле 9. Модуль 9 центрируется в верхней части платформы с помощью направляющего элемента 10. На траверсе 4 размещен пуансон 11 с возможностью вертикальных перемещений, силовое замыкание которого с заготовкой 8 сферодинамическим модулем 9, упругим элементом 3, полой опорой 2 и нижней частью платформы 1 реализуется с помощью упругих элемента 12, втулки 13 и крышки 14.

Пуансон 11 выполнен цилиндрической формы, с рабочей поверхностью, выполненной по геометрии логарифмической спирали Бернулли, сферодинамический модуль 9 выполнен в форме половины эллипсоида вращения, при этом его вертикальная ось смещена по отношению к вертикальной оси пуансона 11 на величину, определяющую из соотношения e=(3…4)δ,

где е - величина смещения в горизонтальной плоскости вертикальных осей пуансона и сферодинамического модуля, мм;

δ - шаг логарифмической спирали Бернулли рабочей поверхности пуансона, мм,

пуансон 11 и сферодинамический модуль 9 установлены с возможностью вращения и качения в вертикальной плоскости.

Устройство работает следующим образом: заготовку 8 размещают на сферодинамическом модуле 9, установленном на упругом элементе 3 в полой опоре 2, размещенной в полости платформы 1, выполненной составной из двух частей, модуль 9 контактирует боковой поверхностью с направляющим элементом 10. Заготовка 8 устанавливается на ложементе 7, который размещен на одной из направляющих колонн 5, соединяющих траверсу 4 с верхней частью платформы 1, ложемент 7 установлен на упругих элементах 6 упомянутой колонны.

Процесс деформирования осуществляют следующим образом: заготовку 8 размещают на опорном элементе 9, установленном с возможностью спонтанных вращательно-колебательных движений, и прикладывают к заготовке 8 со стороны инструмента 11 усилия осадки и обкатывания, при этом усилие осадки прикладывают поэтапно, при этом степень деформации на первом этапе осадки определяют из соотношения ε1=(0,6…0,8)εδ1,

где ε1 - степень деформации заготовки по высоте на первом этапе осадки, %;

εδ1 - степень деформации материала заготовки, соответствующая нижнему пределу реализации эффекта Баушингера, %,

а степени осадки полуфабриката на всех последующих этапах осадки определяют из соотношения ε2=(0,2…0,3)εδ2,

где ε2 - степень деформации заготовки по высоте на втором и последующих этапах осадки, %;

εδ2 - степень деформации материала заготовки, соответствующая верхнему пределу реализации эффекта Баушингера, %,

обкатывание заготовки начинают в момент перевода ее в состояние деформационного резонанса и нарушения контакта заготовки и опорного элемента.

Было установлено, что при ε1<0,6 εδ1 структурное состояние металла заготовки не обладает «памятью формы» согласно эффекту Баушингера, а потому механизмы ротационной пластичности, реализуемые воздействием сферодинамического модуля 9 в виде пластических роторов (вихрей), не проникают на наноуровень (10-9 м) металла обрабатываемой заготовки 8. При ε1>0,8 εδ1 механизмы деформации носят сдвиговый характер, и металл заготовки 8 не запоминает историю его нагружения. При ε2>0,3 εδ2 линейные дислокации суммируются, и создается большая вероятность нарушения сплошности металла заготовки 8.

Процесс объемного сферодинамического наноструктурирования материала заготовки 8 происходит следующим образом. Пуансон 11 поэтапно деформирует заготовку 8 осадкой своей рабочей поверхности, выполненной по геометрии логарифмической спирали Бернулли, что обеспечивает подачу в очаг деформации порций металла заготовки 8, позволяющей реализовать волновую природу пластической деформации. Смещение вертикальной оси сферодинамического модуля 9 на величину е, определяемую вышеуказанным соотношением, обеспечивает регламентированный перевод всей деформирующей сферодинамической системы в состояние деформационного резонанса, что обеспечивает проникновение механизмов волновой пластичности - пластических роторов (вихрей) на наноуровень обрабатываемого материала заготовки 8. Размещение пуансона 11 и сферодинамического модуля 9 с возможностью вращения и качания обеспечивает перемещение пластического момента деформации от пуансона 11 и сферодинамического модуля 9 по всему массиву металла обрабатываемой заготовки 8. В состоянии деформационного резонанса сферодинамическая деформирующая система в виде пуансона 11 и сферодинамического модуля 9 обеспечивают при одновременном деформировании встречное перемещение волновых фронтов деформации. При встрече фронтов происходит переход всей системы в состояние взрывной неустойчивости, следствием чего является временная потеря контакта сферодинамического модуля 9 с упругим элементом 3, размещенным в полой опоре 2, и приобретение им свойств бесприводного реактивного источника деформирования, питаемого потерями инерции активного источника (пуансона 11) диссипатируемыми массивом металла заготовки 8. В результате сферодинамического объемного наноструктурирования в металле формируется наноформатная структура.

Кристаллографическим отражением проникновения пластических роторов (вихрей) на наноуровень является преобладание объемной доли ротационной компоненты (110) <111> [2] в массиве матричного металла наноструктурированного материала.

Пример осуществления способа: в условиях пресса мод. ДБ2432А с использованием устройства для сферодинамического объемного наноструктурирования материалов (фиг.1) осуществили обработку партии листовых образцов сплавов АМг6, 12Х18Н10Т и 36НХТЮ в режиме деформационного резонанса, энергосиловые параметры которого, а также параметры текстурного состояния матричного металла в исходном и наноструктурированном состоянии приведены в таблице.

Таблица
Материал образцов Энергосиловые параметры реализации деформационного резонанса Объёмная доля ротационной компоненты (110) <111>, % наноструктурированное (исходное)
ε1, % σт ε2, % σт e, мм δ, мм
σт - предел текучести материала, кг/мм2
АМг6 4 8 2 3 68 (17)
12Х18Н10Т 6 9 4 5 54 (10)
36НХТЮ 5 7 3 4 48 (7)

Источники информации

1. Патент РФ №2363560, B21J 13/02, 22.11.2007 г.

2. Патент РФ №2282519, B21J 5/08, 24.12.2004 г.

3. Вассерман Ф., Гревен Л. «Текстуры металлов». М.: «Наука», с.112-118, 1966 г.

Источник поступления информации: Роспатент

Showing 1-10 of 18 items.
20.02.2013
№216.012.2650

Способ сферодинамической обработки инструмента для сферодвижной штамповки

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении штампового инструмента. Заготовку размещают в полости матрицы на сферодинамическом флуктуационном модуле с опорой на толкатель. Производят деформирование заготовки пуансоном и модулем,...
Тип: Изобретение
Номер охранного документа: 0002475328
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2c34

Устройство для определения массы и положения центра масс изделия

Изобретение относится к машиностроению, а именно к устройствам для определения массы и координат центра масс преимущественно крупногабаритных изделий. Устройство для определения массы и положения центра масс изделия содержит стол с грузовыми площадками, имеющий центральную призматическую опору,...
Тип: Изобретение
Номер охранного документа: 0002476843
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c3b

Способ контроля и диагностирования ракетного двигателя

Изобретение относится к способам функционального контроля и диагностирования состояния при испытаниях сложных пневмогидравлических объектов, например ракетных двигателей. Способ контроля и диагностирования ракетного двигателя заключается в циклическом измерении контролируемых параметров...
Тип: Изобретение
Номер охранного документа: 0002476850
Дата охранного документа: 27.02.2013
27.04.2013
№216.012.3b3d

Способ определения моментов инерции изделия и устройство для его осуществления

Группа изобретений относится к машиностроению и может быть использована для определения моментов инерции различных изделий, в том числе крупногабаритных и маложестких, имеющих ограничения на установку в наклонном положении, например крупногабаритных космических аппаратов. При реализации способа...
Тип: Изобретение
Номер охранного документа: 0002480726
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4dac

Способ определения массы и положения центра масс изделия и устройство для его осуществления

Изобретения относятся к машиностроению, а именно к устройствам и способам определения координат центра масс преимущественно крупногабаритных изделий. Устройство содержит переходник для установки изделия, шарнирно соединенный с тремя опорами, две из которых снабжены силоизмерительными...
Тип: Изобретение
Номер охранного документа: 0002485466
Дата охранного документа: 20.06.2013
20.02.2019
№219.016.c32a

Установка для электронно-лучевой сварки

Изобретение относится к оборудованию для сборки и электронно-лучевой сварки кольцевых стыков крупногабаритных обечаек из алюминиевых сплавов с локальным вакуумированием зоны сварки и может быть использовано в космической, авиационной, транспортной, химической отраслях промышленности. Установка...
Тип: Изобретение
Номер охранного документа: 0002405664
Дата охранного документа: 10.12.2010
01.03.2019
№219.016.d099

Станок горизонтальный фрезерный многошпиндельный

Изобретение относится к станкостроению и может быть использовано при изготовлении корпусных деталей малой жесткости с ячеистым (вафельным) фоном. Станок содержит две станины. На одной из станин смонтирован инструментальный блок. Выполнен в виде двух разнонаправленных активной и пассивной скоб....
Тип: Изобретение
Номер охранного документа: 0002465104
Дата охранного документа: 27.10.2012
20.03.2019
№219.016.e80c

Измеритель пространственных вибраций

Изобретение относится к измерительной технике и может быть использовано для измерения вибрации электроприводов различных приборов. Измеритель пространственных вибраций содержит основание, подвесную систему, вибропреобразователи, связанные с электронным преобразовательным блоком, и подвес для...
Тип: Изобретение
Номер охранного документа: 0002454644
Дата охранного документа: 27.06.2012
20.03.2019
№219.016.e893

Способ изготовления биметаллических переходников

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении биметаллических переходников с наружным слоем из менее пластичного материала. В качестве заготовки используют биметаллический лист, слои которого имеют разную пластичность. Из листа получают дисковую...
Тип: Изобретение
Номер охранного документа: 0002402397
Дата охранного документа: 27.10.2010
20.03.2019
№219.016.e9d8

Устройство для резистивного испарения металлов и сплавов в вакууме

Изобретение относится к оборудованию для нанесения металлических покрытий в вакууме и может найти применение в космической, авиационной промышленности и радиотехнике. Устройство для резистивного испарения металлов и сплавов в вакууме состоит из установленных в вакуумной камере двух...
Тип: Изобретение
Номер охранного документа: 0002468121
Дата охранного документа: 27.11.2012
Showing 1-10 of 22 items.
20.02.2013
№216.012.2650

Способ сферодинамической обработки инструмента для сферодвижной штамповки

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении штампового инструмента. Заготовку размещают в полости матрицы на сферодинамическом флуктуационном модуле с опорой на толкатель. Производят деформирование заготовки пуансоном и модулем,...
Тип: Изобретение
Номер охранного документа: 0002475328
Дата охранного документа: 20.02.2013
27.10.2013
№216.012.7b42

Способ изготовления спиральной защитной оболочки композитного изолятора

Изобретение относится к области электротехники, а именно к способу изготовления спиральной защитной оболочки композитного изолятора, включающему в себя закрепление остова (1) с армированными по торцам фланцами в механизм намотки, вращающий его вокруг продольной оси с одновременным перемещением...
Тип: Изобретение
Номер охранного документа: 0002497216
Дата охранного документа: 27.10.2013
27.02.2014
№216.012.a5ea

Установка гидроабразивной резки

Изобретение относится к области машиностроения и может быть использовано для гидроабразивной резки листовых материалов. Установка содержит основание с продольными направляющими, на которых с возможностью возвратно-поступательного перемещения установлен портал с поперечными направляющими. На...
Тип: Изобретение
Номер охранного документа: 0002508189
Дата охранного документа: 27.02.2014
27.03.2014
№216.012.ae31

Пресс-форма для прессования брикетов из порошкообразного материала

Изобретение относится к порошковой металлургии, в частности к оборудованию для компактирования прессованием порошкообразных материалов. Может использоваться для получения брикетов из мелкодисперсных порошков, вводимых в расплавы металлов в качестве легирующих добавок. Пресс-форма содержит...
Тип: Изобретение
Номер охранного документа: 0002510308
Дата охранного документа: 27.03.2014
27.09.2014
№216.012.f7be

Штамп для формообразования изделий из листовых заготовок

Изобретение относится к оборудованию для обработки металлов давлением и может быть использовано при изготовлении из листовых заготовок таких изделий, как, например, сосуды давления топливных систем космических аппаратов. Штамп содержит верхнюю и нижнюю половины, в которых выполнены рабочие...
Тип: Изобретение
Номер охранного документа: 0002529259
Дата охранного документа: 27.09.2014
25.08.2017
№217.015.b972

Способ электронно-лучевой сварки разнородных металлов

Изобретение относится к электронно-лучевой сварке плоских стыков деталей из разнородных металлов. Предварительно собирают детали встык и направляют электронный луч на стык. Электронный луч перемещают по стыку и производят его развертку с частотой 750-850 Гц по окружности диаметром d=(0,6…0,8)h,...
Тип: Изобретение
Номер охранного документа: 0002615101
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.d184

Способ аргонодуговой сварки кольцевых стыков трубчатых деталей

Изобретение относится к способу аргонодуговой сварки кольцевых стыков трубчатых деталей, одна из которых выполнена в форме стакана с центральным отверстием в донной части, а другая трубчатой формы. Формируют пакет из трубчатых деталей путем установки трубчатой детали на опору и установки на ее...
Тип: Изобретение
Номер охранного документа: 0002621539
Дата охранного документа: 06.06.2017
20.02.2019
№219.016.c32a

Установка для электронно-лучевой сварки

Изобретение относится к оборудованию для сборки и электронно-лучевой сварки кольцевых стыков крупногабаритных обечаек из алюминиевых сплавов с локальным вакуумированием зоны сварки и может быть использовано в космической, авиационной, транспортной, химической отраслях промышленности. Установка...
Тип: Изобретение
Номер охранного документа: 0002405664
Дата охранного документа: 10.12.2010
01.03.2019
№219.016.d099

Станок горизонтальный фрезерный многошпиндельный

Изобретение относится к станкостроению и может быть использовано при изготовлении корпусных деталей малой жесткости с ячеистым (вафельным) фоном. Станок содержит две станины. На одной из станин смонтирован инструментальный блок. Выполнен в виде двух разнонаправленных активной и пассивной скоб....
Тип: Изобретение
Номер охранного документа: 0002465104
Дата охранного документа: 27.10.2012
11.03.2019
№219.016.dc25

Станок для электроэрозионного формообразования отверстий

Изобретение относится к электроэрозионному станку, предназначенному для формообразования тангенциальных отверстий в топливных форсунках. Станок содержит основание, на верхней плоскости которого расположены каретка с инструментальной головкой, имеющая возможность поперечного перемещения, каретка...
Тип: Изобретение
Номер охранного документа: 0002455133
Дата охранного документа: 10.07.2012
+ добавить свой РИД