×
09.05.2019
219.017.4df2

Результат интеллектуальной деятельности: КАТОДНЫЙ УЗЕЛ ЭЛЕКТРОДУГОВОГО ИСПАРИТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике вакуумно-плазменного нанесения покрытия, в частности к электродуговому испарителю, и может быть использовано в авиа- и машиностроении для нанесения защитных упрочняющих покрытий на различные изделия. Рабочая поверхность катода выполнена бочкообразно, внутренняя поверхность катода может иметь как цилиндрическую форму, бочкообразную, так в виде цилиндров различного диаметра, с максимальным диаметром в центре и с минимальным на торцах. Катод может быть изготовлен составным из колец, из сегментов из разнородных материалов. Технический результат: повышение качества напыляемого на поверхность изделия покрытия и возможность создания пленочных мультислойных, в том числе нанотолщинных покрытий. 17 з.п. ф-лы, 5 ил.

Изобретение относится к технике вакуумно-плазменного нанесения покрытия и может быть использовано в авиа- и машиностроении для нанесения защитных упрочняющих покрытий на различные изделия.

Для напыления упрочняющих покрытий наиболее широкое распространение получили катодные узлы планарного типа, у которых катод представляет собой плоский параллелепипед из напыляемого материала. Работа такого источника основана на вакуумном дуговом разряде, горящем исключительно в парах материала катода. Камера установки служит анодом, а испаритель, выполненный из напыляемого материала, является катодом, на котором горит дуга и происходит испарение ионов металла в газовой среде. Из-за неподвижного расположения происходит неравномерное испарение металла с планара, недостаточное количество испаряемых ионов в объеме камеры и высокая капельная фаза.

Прототипом изобретения служит катодный узел электродугового испарителя металлов для нанесения покрытий на протяженные изделия (Патент RU 2280709 С2 С23С 14/35, 2006). Испаритель состоит из немагнитного катода электродугового разряда и анода. В полости катода расположена система управления движением катодного пятна в виде катушки с соленоидами. Анод выполнен немагнитным в виде вертикальных пластин, расположенных по окружности вдоль катода и охватывающих его. Блок управления движением катодного пятна состоит из программируемого устройства, источника постоянного тока с отрицательным выходом для подключения к обрабатываемой детали. Электродуговой испаритель содержит охлаждаемый катод, с возможностью вращательного движения, выполненный из испаряемого материала в виде обечайки с внешней рабочей и внутренней охлаждаемой поверхностью, снабженный средствами подвода и отвода охлаждающей среды, средствами электрической связи катода с источником электропитания разряда, магнитным фиксатором положения катодного пятна, с возможностью возвратно-поступательного движения и поворота относительно оси катода.

Недостатком прототипа является то, что поверхность, с которой испаряются ионы металла, является цилиндрической, за счет чего существует большой процент капельной фазы, что ухудшает напыляемый слой. Также к недостатку этого изобретения следует отнести то, что катод является цельным, что не позволяет получать слои напыляемого материала из разных элементов.

Задачей изобретения является повышение качества напыляемого на поверхность изделия покрытия за счет бочкообразной формы катода, возможности изготовления катода составным (из колец, сегментов или смешанным вариантом), трех вариантов изготовления внутренней поверхности катода, а также за счет возможности компоновки катода из разнородных материалов.

Поставленная задача решается тем, что электродуговой испаритель, содержащий охлаждаемый катод, с возможностью вращательного движения, выполненный из испаряемого материала в виде обечайки с внешней рабочей и внутренней охлаждаемой поверхностью, снабженный средствами подвода и отвода охлаждающей среды, средствами электрической связи катода с источником электропитания разряда, магнитным фиксатором положения катодного пятна, с возможностью возвратно-поступательного движения и поворота относительно оси катода, в отличие от прототипа имеет бочкообразную рабочую поверхность катода.

Кроме того, в отличие от прототипа электродуговой испаритель может иметь внутреннюю поверхность катода цилиндрической формы.

Кроме того, в отличие от прототипа электродуговой испаритель может иметь внутреннюю поверхность катода бочкообразной формы.

Кроме того, в отличие от прототипа электродуговой испаритель может иметь внутреннюю поверхность катода, выполненную в виде цилиндров различного диаметра, с максимальным диаметром в центре и с минимальным на торцах.

Также технический результат достигается тем, что электродуговой испаритель в отличие от прототипа имеет составной катод.

Технический результат достигается тем, что составные части катода электродугового испарителя могут быть выполнены в виде колец.

Кроме того, в отличие от прототипа составные части катода электродугового испарителя могут быть выполнены в виде сегментов.

Кроме того, в отличие от прототипа составные части катода электродугового испарителя - кольца - могут быть выполнены в виде сегментов.

Технический результат достигается тем, что составные части катода - кольца - имеют возможность смещения друг относительно друга на угол от 0 до 360°.

Технический результат достигается тем, что в отличие от прототипа электродуговой испаритель имеет составные части катода, выполненные из разнородных материалов с возможностью обеспечения заданной компоновки.

Технический результат достигается тем, что в отличие от прототипа соотношение размеров составных частей катода электродугового испарителя может быть различно, в зависимости от требований к составу напыляемого покрытия.

Кроме того, в отличие от прототипа составные части электродугового испарителя могут быть соединены сваркой.

Сущность изобретения поясняется чертежами: на Фиг.1 изображена принципиальная схема катодного узла. На Фиг.2 изображен процесс отделения капельной фазы. На Фиг.3 представлены варианты внутренней поверхности электродугового испарителя. На Фиг.4 представлены конструктивные варианты исполнения составных частей катода. На Фиг.5 изображены варианты возможной компоновки составных частей изобретения.

На Фиг.1 представлена принципиальная схема предлагаемого изобретения, где цифрами обозначены: 1 - испаряемый материал (катод); 2 - внутренняя полость; 3 - магнитный фиксатор положения катодного пятна (МФПКП), имеющий возможность возвратно-поступательного движения и поворота относительно оси катода, ω - угловая скорость вращения катода, φ - угол поворота магнитного фиксатора.

Технический результат достигается тем, что рабочая поверхность катода выполнена бочкообразно. В отличие от цилиндрической формы катода (прототипа), бочкообразная форма позволяет значительно снизить процент капельной фазы (Фиг.2). При испарении ионов с поверхности катода происходит отделение капельной фазы, представляющей из себя расплавленные капли испаряемого материала, в пределах от 0 до 15° от поверхности испарения (угол γ, Фиг.2). Угол α1 и α2 (Фиг.2) - угол испарения ионов металла без капельной фазы, при цилиндрической и бочкообразной форме катода соответственно. Как видно из рисунка, за счет бочкообразной формы (Фиг.2b) происходит значительное уменьшение попадания капельной фазы на обрабатываемое изделие, в отличие от цилиндрической формы катода (Фиг.2а), α21, что значительно улучшает качество покрытия.

Технический результат достигается и тем, что либо внутренняя поверхность катода имеет цилиндрическую форму (Фиг.3а), либо внутренняя поверхность катода имеет бочкообразную форму(Фиг.3b), либо внутренняя поверхность катода выполнена в виде цилиндров различного диаметра, с максимальным диаметром в центре и с минимальным на торцах (Фиг.3с). Данные конструктивные варианты позволяют осуществить охлаждение катода и обеспечить возможность его вращения. При внутренней поверхности катода, выполненной в бочкообразной форме, технический результат достигается за счет того, что за счет равномерной толщины катода происходит экономия напыляемого материала и равномерное охлаждение катода.

Наиболее перспективным и эффективным процессом нанесения покрытий являются ионно-плазменные способы нанесения пленочных мультислойных, в том числе нанотолщинных покрытий в вакууме. Этот способы имеют ряд существенных преимуществ перед другими известными способами нанесения покрытий. Для получения пленок из различных материалов требуется использование нескольких цельных катодов из различных материалов или составных катодов.

Технический результат достигается и тем, что предлагаемое изобретение имеет составной катод, позволяющий получать напыляемое покрытие из различных материалов (Фиг.4). Предлагается три варианта конструктивного решения составного катода.

Технический результат может быть достигнут за счет того, что составные части катода выполнены в виде колец. Разъем катода выполнен в горизонтальной плоскости относительно оси катода (Фиг.4а). То есть составные части испарителя имеют форму колец К (Фиг.4a). Количество составных частей может варьироваться от 2 до n (необходимого количества, в зависимости от состава требуемого покрытия).

Технический результат может быть достигнут за счет того, что составные части катода выполнены в виде сегментов. Разъем катода выполнен в вертикальной плоскости относительно оси катода (Фиг.4b). To есть составные части испарителя имеют форму сегментов С (Фиг.4b). Количество составных частей может варьироваться от 2 до n (необходимого количества, в зависимости от состава требуемого покрытия).

Технический результат также может быть достигнут за счет того, что составные части катода - кольца - выполнены в виде сегментов. Разъем катода также может быть выполнен в совмещенном варианте (Фиг.4с), то есть составные части катода - кольца - в свою очередь разделены на сегменты C' (Фиг.4c). Кольца имеют возможность смещения друг относительно друга на угол от 0 до 360°.

Для устранения главного недостатка прототипа - получения покрытия только из одного материала, предлагается составные части катода изготовить из различных материалов.

Технический результат достигается тем, что составные части катода выполнены из разнородных материалов с возможностью обеспечения заданной компоновки.

Каждый сегмент может быть изготовлен из различного материала и в зависимости их от компоновки позволит получить различные пленочные мультислойные, в том числе нанотолщинные, покрытия. На Фиг.5 изображены примеры компоновок изделия различными материалами, цифрами 1, 2, 3 обозначены разнородные напыляемые материалы. Компоновка сегментов из различных материалов может выполнятся как в шахматном, так и в любом другом порядке, в зависимости от требуемого состава покрытия (Фиг.5).

Технический результат достигается за счет того, что составные части катода имеют разные размеры. Для получения определенного слоя покрытия заданной толщины составные части катода в зависимости от материала, из которого они изготовлены, могут иметь разные размеры. За счет этого каждая из составных частей катода будет напыляться в заданном соотношении от общего объема испаряемых частиц, в зависимости от требуемых характеристик покрытия (Фиг.5).

Испытания, проводимые при нанесении карбидных покрытий (TiN, Ti2N), показали: что при испарении ионов с помощью катода цилиндрической формы процент капельной фазы на напыленном слое составляет 3-5%, а при испарении с катода бочкообразной формы количество капельной фазы составит 0,7-1%.

Таким образом, благодаря бочкообразной форме катода, составным частям, их компоновке, сложному движению МФПКП и различным вариантам внутренней полости качество напыляемого материала на поверхность изделия значительно повышается.

Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
20.02.2019
№219.016.bf40

Способ штамповки заготовок из наноструктурных титановых сплавов

Изобретение относится к области обработки металлов давлением и может быть использовано, например, в авиационной промышленности при изготовлении деталей из титановых сплавов, преимущественно лопаток. Производят предварительную и окончательную штамповку наноструктурных заготовок из титановых...
Тип: Изобретение
Номер охранного документа: 0002382686
Дата охранного документа: 27.02.2010
01.03.2019
№219.016.cc79

Состав для термитной сварки

Изобретение может быть использовано при создании электрохимической защиты магистральных газо- и нефтепроводов, а именно для соединения катодных и дренажных выводов со стенками трубопровода. Состав для термитной сварки содержит компоненты в следующем соотношении, мас.%: оксид меди 57,7-63,0,...
Тип: Изобретение
Номер охранного документа: 0002371289
Дата охранного документа: 27.10.2009
Showing 101-110 of 135 items.
14.07.2019
№219.017.b422

Способ электролитно-плазменного удаления покрытий с деталей из легированных сталей и жаропрочных сплавов

Изобретение относится к технологии электролитно-плазменного удаления защитных алюминидных покрытий на основе никеля и/или кобальта с поверхностей лопаток турбомашин из легированных сталей и жаропрочных сплавов и может быть использовано в авиационном и энергетическом турбостроении при ремонте...
Тип: Изобретение
Номер охранного документа: 0002694397
Дата охранного документа: 12.07.2019
17.07.2019
№219.017.b538

Способ электролитно-плазменного полирования лопаток блиска турбомашин и эластичный чехол для его реализации

Изобретение относится к электролитно-плазменному полированию изделий из легированных сталей, тугоплавких и титановых сплавов и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей. Способ включает погружение обрабатываемых лопаток...
Тип: Изобретение
Номер охранного документа: 0002694684
Дата охранного документа: 16.07.2019
23.07.2019
№219.017.b751

Способ последовательного электролитно-плазменного полирования лопаток блиска турбомашин и рабочая емкость для его реализации

Изобретение относится к электролитно-плазменному полированию изделий из легированных сталей, тугоплавких и титановых сплавов и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых эксплуатационных свойств...
Тип: Изобретение
Номер охранного документа: 0002694935
Дата охранного документа: 18.07.2019
23.07.2019
№219.017.b78d

Способ электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве...
Тип: Изобретение
Номер охранного документа: 0002694941
Дата охранного документа: 18.07.2019
10.08.2019
№219.017.bd86

Материал прирабатываемого уплотнения турбомашины

Изобретение относится к материалам прирабатываемого уплотнения турбомашины. Материал содержит частицы порошкового наполнителя с размерами частиц порошка от 30 мкм до 100 мкм и порошковой добавки, адгезионно соединенные между собой в монолитный материал. В качестве материала наполнителя...
Тип: Изобретение
Номер охранного документа: 0002696985
Дата охранного документа: 08.08.2019
21.08.2019
№219.017.c1bd

Способ электрохимической обработки внутреннего канала металлической детали и электрод-инструмент для его реализации

Изобретение относится к области машиностроения и может быть использовано для обработки каналов путем электрохимического шлифования или полирования. Способ включает перемещение электрода-инструмента по внутренней поверхности канала, вдоль его оси при подключении детали к аноду, а...
Тип: Изобретение
Номер охранного документа: 0002697759
Дата охранного документа: 19.08.2019
21.08.2019
№219.017.c1fb

Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей. Способ включает закрепление блиска на держателе, погружение лопаток блиска в электропроводящие пористые...
Тип: Изобретение
Номер охранного документа: 0002697757
Дата охранного документа: 19.08.2019
21.08.2019
№219.017.c1ff

Способ изготовления перфорационных отверстий в полой лопатке турбины из жаропрочного сплава

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий в лопатках из жаропрочных сплавов путем удаления дефектного слоя электрохимической обработкой. Способ включает прожиг отверстий на пере лопатки...
Тип: Изобретение
Номер охранного документа: 0002697751
Дата охранного документа: 19.08.2019
24.08.2019
№219.017.c37a

Пальчиковое уплотнение

Изобретение относится к области турбо- и двигателестроения и может быть использовано в конструкциях газотурбинных двигателей и паровых турбин для уплотнения радиальных зазоров. Пальчиковое уплотнение содержит примыкающие друг к другу кольцевые детали, каждая из которых содержит равномерно...
Тип: Изобретение
Номер охранного документа: 0002698170
Дата охранного документа: 22.08.2019
07.09.2019
№219.017.c840

Способ последовательного электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин. Способ...
Тип: Изобретение
Номер охранного документа: 0002699495
Дата охранного документа: 05.09.2019
+ добавить свой РИД