×
01.05.2019
219.017.47cb

Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области машиностроения, авиационной и ракетно-космической отраслям промышленности и может быть использовано на этапе наземной лабораторно-стендовой отработки конструкций летательных аппаратов (ЛА) и их элементов (головных обтекателей, радиопрозрачных вставок, окон и т.д.) для воспроизведения тепловых и комплексных воздействий, имитирующих эксплуатационные нагрузки. Предложен способ теплового нагружения неметаллических элементов конструкций летательных аппаратов, включающий контактный нагрев поверхности конструкции, измерение температуры в контрольном сечении и равномерное прижатие нагревателя к конструкции через слой теплоизоляции. Воспроизведение заданного режима теплового нагружения обеспечивается регулированием мощности электрического тока, пропускаемого через нагреватель, расположенный на поверхности конструкции и представляющий собой последовательно-параллельное относительно электрических шин соединение гибких электропроводящих элементов. При этом создание требуемого распределения тепловой энергии теплового поля на поверхности конструкции обеспечивается соответствующей выкладкой электропроводящих элементов нагревателя по координатам конструкции, изготовленных с учетом требуемой величины сопротивления каждого отдельного элемента нагревателя, определяемого расчетным методом. Технический результат - повышение точности воспроизведения тепловых режимов стендовых испытаний неметаллических элементов конструкций ЛА, в том числе имеющих сложную не осесимметричную геометрическую форму нагреваемой поверхности. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области машиностроения, авиационной и ракетно-космической отраслям промышленности и может быть использовано на этапе наземной лабораторно-стендовой отработки конструкций летательных аппаратов (ЛА) и их элементов (головных обтекателей, радиопрозрачных вставок, окон и т.д.) для воспроизведения тепловых и комплексных воздействий, имитирующих эксплуатационные нагрузки.

Для подтверждения работоспособности конструкций ЛА в условиях аэродинамического нагрева известны способы теплового нагружения с применением баллистических, плазменных установок и аэродинамических труб, однако их использование требует значительных материальных затрат и приводит к существенному увеличению трудоемкости испытаний, что не оправданно на этапах опытно-конструкторских работ и в процессе серийного производства отдельных элементов конструкций ЛА.

В связи с этим в процессе наземной отработки конструкций ЛА при проведении теплопрочностных и других испытаний используют способы теплового нагружения, в основе которых лежат твердотельные или газорязрядные излучатели, позволяющие с требуемой точность воспроизводить заданный по режиму падающий тепловой поток [Материалы для электротехнических установок: Справочное пособие / Н.В. Большакова, К.С. Борисанова, В.И. Бурцев и др. - М.: Энергоатомиздат, 1987. - 296 с.; Газоразрядные источники света / Г.Н. Рохлин. - М.-Л.: Энергия, 1966. - 216 с.].

В настоящее время широкое распространение получили испытательные стенды и установки, использующие способы радиационного теплового нагружения, реализуемые посредством инфракрасных лучистых излучателей (кварцевых ламп) [патент РФ №2440700 С1, МПК Н05В 3/44, опубл. 20.01.2012 г.; патент РФ №2612887 С1, МПК G01N 25/72, опубл. 13.03.2017 г.], а также с использованием, так называемых, контактных (гибких) излучателей [патент РФ №2456568 С1, МПК G01M 9/04, G01N 25/72, опубл. 20.07.2012 г.; патент РФ №2599460 С1, МПК G01N 25/72, G01M 9/04, опубл. 10.10.2016 г.].

Недостатком указанных способов является недостаточная точность воспроизведения заданных режимов испытаний и неравномерность нагрева.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ тепловых испытаний обтекателей ракет из неметаллических материалов [патент РФ №2571442 С1, МПК G01N 25/72, G01M 9/04, опубл. 20.12.2015 г.].

Способ включает контактный нагрев всей поверхности и измерение температуры в одном сечении, распределение температуры по окружности изделия задается несколькими электропроводящими секторами постоянной толщины, покрывающими всю поверхность обтекателя и выполненными по форме наружной поверхности обтекателя, разделенной продольными меридианными линиями, причем все электропроводящие сектора соединены в электрическую цепь параллельно и пересекаются у носка, где монтируется одна из электрических шин, а вторая электрическая шина охватывает все сектора ниже торца обтекателя, причем для стабилизации термического контакта наружная поверхность нагревателя равномерно прижимается по всей поверхности через слой теплоизоляции.

Основным недостатком данного способа теплового нагружения является отсутствие возможности воспроизведения тепловых полей сложных конфигураций, изменяющих величину падающего теплового потока как в меридианном, так и в окружном и других направлениях конструкций ЛА, что существенно снижает точность выполнения программ наземных стендовых испытаний и достоверность их результатов.

Техническим результатом заявляемого изобретения является повышение точности воспроизведения тепловых режимов стендовых испытаний неметаллических элементов конструкций ЛА, в том числе имеющих сложную (не осесимметричную) геометрическую форму нагреваемой поверхности.

Технический результат достигается тем, что предложен способ теплового нагружения неметаллических элементов конструкций летательных аппаратов, включающий контактный нагрев поверхности конструкции, измерение температуры в контрольном сечении и равномерное прижатие нагревателя к конструкции через слой теплоизоляции, отличающийся тем, что воспроизведение заданного режима теплового нагружения обеспечивается регулированием мощности электрического тока, пропускаемого через нагреватель, расположенный на поверхности конструкции и представляющий собой последовательно-параллельное (относительно электрических шин) соединение гибких электропроводящих элементов, при этом создание требуемого распределения тепловой энергии (теплового поля) на поверхности конструкции обеспечивается соответствующей выкладкой электропроводящих элементов нагревателя по координатам конструкции, изготовленных с учетом требуемой величины сопротивления каждого отдельного элемента нагревателя, определяемого по формуле:

где Δli - шаг разбиения поверхности конструкции в меридианном направлении;

i=1…n, n - количество участков разбиения в меридианном направлении;

Δϕj - шаг разбиения поверхности конструкции в окружном направлении;

j=1…k, k - количество участков разбиения в окружном направлении;

- матрица распределения сопротивления элементов нагревателя;

- матрица распределения заданного температурного поля на поверхности конструкции;

I - сила тока, пропускаемого через нагреватель;

ck(Т) - удельная теплоемкость материала нагреваемой конструкции;

- масса элемента конструкции, контактирующего с соответствующим элементом нагревателя

- коэффициент передачи тепловой энергии от элемента нагревателя с сопротивлением к элементу конструкции массой ;

tmax - момент времени, соответствующий максимальной силе тока I.

Для вывода формулы (1) проведено разбиение гибкого нагревателя, расположенного на поверхности нагреваемой конструкции ЛА, имеющей, к примеру, конусообразную форму, на участки. Разбиение проводилось на i×j количество элементов (фиг. 1).

При этом i=1…n - количество участков разбиения нагревателя в меридианном направлении с шагом равным Δl (фиг. 1а), то есть:

где L - длина образующей конструкции ЛА;

Δli - шаг разбиения поверхности конструкции в меридианном направлении;

j=1…k - количество участков разбиения в окружном направлении с шагом Δϕ (фиг. 1б), то есть:

где D - диаметр основания конструкции ЛА;

Δϕi - шаг разбиения поверхности конструкции в окружном направлении.

Из фиг. 1в видно, что

есть матричное представление распределения сопротивления нагревателя, расположенного на боковой поверхности конусообразной конструкции ЛА.

Рассмотрим отдельный элемент нагревателя, образованный разбиением участков Δli-1-Δli и Δϕj-1-Δϕj, то есть элемент нагревателя, имеющий сопротивление

Мощность электрического тока, проходящего через рассматриваемый элемент нагревателя равна:

Ввиду того, что электрический ток проходит по неподвижному проводнику, вся работа, совершаемая током, уходит на нагрев проводника, то есть:

где - общее количество тепловой энергии, выделяемой в элементе нагревателя, имеющего сопротивление t - время.

Количество тепловой энергии передающейся на поверхность конструкции ЛА, характеризуется коэффициентом передачи равным отношению к общему количеству тепловой энергии то есть:

Коэффициент передачи зависит от теплофизических свойств материала конструкции ЛА и характеристик используемой при нагреве внешней теплоизоляции. На практике определяется расчетным путем с последующей корректировкой по результатам экспериментов.

По определению теплоемкости материала количество тепловой энергии определяется исходя из соотношения:

где ck(Т) - удельная теплоемкость материала конструкции ЛА, зависящая от температуры.

Тогда из соотношений (2), (3) и (4) следует, что элементы матрицы распределения сопротивления нагревателя определяют из соотношения:

При расчете нагревателя и построении матрицы сопротивлений используют значение силы тока I соответствующее максимальной силе тока Imax достигаемой на нагревательной установке или стенде в фиксированный момент времени t=tmax.

Построенная исходя из соотношения (5) матрица сопротивлений используются на практике при изготовлении контактного нагревателя для создания требуемого распределения электрического сопротивления, позволяющего воспроизводить тепловое поле заданной конфигурации.

Способ иллюстрирует схема, приведенная на фиг. 2. Изготовленный согласно матрице сопротивлений контактный нагреватель 3 устанавливают на внешней поверхности нагреваемой конструкции 2 путем прижатия к конструкции через теплоизоляционный слой 4. Тепловое нагружения конструкции 2 тепловым полем заданной конфигурации осуществляется путем пропускания через нагреватель 3 электрического тока, подводимого к нагревателю посредством электрических шин 1. Воспроизведение режима теплового нагружения во времени осуществляется путем регулирования мощности электрического тока по показанием одной или нескольких термопар 5, установленных на внешней поверхности конструкции 2 в контрольной зоне. Измерение температуры в остальных зонах конструкции при этом осуществляется с помощью термопар, расположенных на поверхности конструкции в соответствующих зонах.

На фиг. 3 приведен пример схемы распределения теплового поля, падающего на внешнюю поверхность головного элемента конструкции высокоскоростного ЛА (3а - наветренная сторона конструкции; 3б - подветренная стороны конструкции), воспроизведение которого может быть реализовано предлагаемым способом при наземной лабораторно-стендовой отработке конструкции. На схеме условно показан числовой эквивалент величины плотности теплового потока, падающего на соответствующую зону конструкции.

Предлагаемый способ позволяет повысить точность выполнения программ тепловых испытаний высокоответственных конструкций ЛА, надежность, достоверность и информативность результатов испытаний.

Способ может найти широкое применение при проведении теплопрочностных, а также комплексных термовакуумных и термовибрационных испытаний конструкций ЛА, имеющих сложную геометрическую форму и (или) сложную конфигурацию воспроизводимого теплового поля.


Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Источник поступления информации: Роспатент

Showing 1-10 of 136 items.
10.10.2015
№216.013.80e9

Быстроразъемное соединение отсеков корпуса летательного аппарата

Изобретение относится к области авиационной и ракетной техники, в частности к конструкциям герметичных разъемных соединений отсеков корпуса летательных аппаратов и, в особенности, к конструкциям герметичного соединения обтекателя с отсеком корпуса летательного аппарата. Быстроразъемное...
Тип: Изобретение
Номер охранного документа: 0002564598
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.824b

Способ изготовления трехслойной панели из композиционного материала

Изобретение относится к способам изготовления трехслойных панелей из композиционного материала и может быть использовано для получения панелей авиационной и космической техники, например для изготовления корпусных деталей фюзеляжа самолета. При формировании первой обшивки трехслойной панели по...
Тип: Изобретение
Номер охранного документа: 0002564952
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.853c

Способ изготовления сотового заполнителя

Изобретение относится к способу изготовления сотового заполнителя из стеклоткани и может быть использовано в ракето-, самолето- и судостроении, строительной, мебельной и упаковочной промышленности при изготовлении трехслойных конструкций сложной кривизны. Способ включает нанесение клеевых полос...
Тип: Изобретение
Номер охранного документа: 0002565711
Дата охранного документа: 20.10.2015
20.12.2015
№216.013.9b89

Способ тепловых испытаний обтекателей ракет из неметаллических материалов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА) и может быть использовано для проектирования аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Предлагаемый способ воспроизведения аэродинамического нагрева...
Тип: Изобретение
Номер охранного документа: 0002571442
Дата охранного документа: 20.12.2015
27.02.2016
№216.014.bf1e

Способ получения полидисперсного порошка карбида бора

Изобретение относится к производству неорганических соединений, конкретно к карботермическому способу получения полидисперсных порошков карбида бора, предназначенных для получения на их основе абразивных порошков для шлифования и ударопрочной керамики. Способ включает смешивание борной кислоты...
Тип: Изобретение
Номер охранного документа: 0002576041
Дата охранного документа: 27.02.2016
10.05.2016
№216.015.3bbc

Способ теплового нагружения обтекателей ракет из неметаллических материалов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Сущность: осуществляют воспроизведение аэродинамического силового и...
Тип: Изобретение
Номер охранного документа: 0002583353
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3f07

Способ контроля узла соединения керамического обтекателя

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА). Сущность: осуществляют силовое нагружение на сдвиг и измерение деформаций соединения. Силовое нагружение прилагают вдоль оси симметрии обтекателя через пуансон с упругой прокладкой, наружная поверхность...
Тип: Изобретение
Номер охранного документа: 0002584439
Дата охранного документа: 20.05.2016
13.01.2017
№217.015.6b5c

Устройство для измерения толщины стенки детали типа оболочка вращения

Изобретение относится к области машиностроения и приборостроения, а именно к устройствам для измерения толщины стенок пустотелых деталей вида оболочек вращения. Устройство для измерения толщины стенки детали типа оболочка вращения содержит основание с направляющими, на котором размещены...
Тип: Изобретение
Номер охранного документа: 0002592725
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c04

Клиновое соединение

Изобретение относится к машиностроению и может быть использовано для соединения полых трубчатых деталей и узлов конструкций ракет, эксплуатируемых в условиях воздействия высоких температур и вибраций, и направлено на повышение надежности соединения деталей и снижение трудоемкости...
Тип: Изобретение
Номер охранного документа: 0002592767
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.70c9

Способ получения высокотермостойкого радиопрозрачного материала (изделия) на основе фосфатного связующего и кварцевой ткани

Изобретение относится к области получения высокотермостойких радиопрозрачных материалов. Технический результат изобретения заключается в защите стеклоткани от термодеструкции, обеспечении диэлектрических и прочностных характеристик материала в режимах одностороннего нагрева до 1200°C при...
Тип: Изобретение
Номер охранного документа: 0002596619
Дата охранного документа: 10.09.2016
Showing 1-10 of 162 items.
27.01.2013
№216.012.2140

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей скоростных ракет из пористой керамики. Технический результат заключается в упрощении конструкции и технологии изготовления антенного обтекателя из пористой керамики....
Тип: Изобретение
Номер охранного документа: 0002474013
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.24d6

Антенный обтекатель

Заявленное изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей скоростных ракет из керамики. Техническим результатом настоящего изобретения является улучшение радиотехнических характеристик керамических...
Тип: Изобретение
Номер охранного документа: 0002474932
Дата охранного документа: 10.02.2013
27.09.2013
№216.012.70b5

Антенный обтекатель

Изобретение относится к области создания конструкций антенных обтекателей высокоскоростных ракет с оболочками из жаростойких керамических материалов. Технический результат - обеспечение работоспособности антенного обтекателя для условий одновременного удовлетворения воздействию превалирующих...
Тип: Изобретение
Номер охранного документа: 0002494504
Дата охранного документа: 27.09.2013
10.11.2013
№216.012.7d6e

Теплозащитное покрытие

Изобретение относится к области авиационно-космической техники, главным образом к производству теплозащитных покрытий, которые могут быть использованы для нанесения на внешнюю или внутреннюю поверхность оболочек из нитрида кремния головных антенных обтекателей ракет. Теплозащитное покрытие...
Тип: Изобретение
Номер охранного документа: 0002497783
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.8649

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может использоваться преимущественно в конструкциях высокоскоростных ракет различных классов. Технический результат - увеличение длительности эксплуатационного режима за счет сохранения прочности соединения металл-керамика при...
Тип: Изобретение
Номер охранного документа: 0002500055
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.89f8

Способ определения коэффициента теплопроводности частично прозрачных материалов

Изобретение относится к области термометрии и может быть использовано для определения коэффициента теплопроводности частично прозрачных керамических и стеклообразных материалов с учетом их прозрачности. Способ включает нестационарный нагрев поверхности образца в виде пластины радиационными...
Тип: Изобретение
Номер охранного документа: 0002501002
Дата охранного документа: 10.12.2013
10.03.2014
№216.012.a959

Способ получения кварцевой керамики с повышенной излучательной способностью

Изобретение относится к производству керамических изделий радиотехнического назначения, работающих в условиях воздействия высокотемпературных газовых потоков. Техническим результатом изобретения является снижение водопоглощения и повышение прочности и коэффициента черноты изделий. Способ...
Тип: Изобретение
Номер охранного документа: 0002509068
Дата охранного документа: 10.03.2014
20.04.2014
№216.012.b8f0

Способ получения высокоплотного водного шликера на основе кварцевого стекла

Изобретение относится к керамической промышленности и может быть использовано при изготовлении изделий из кварцевой керамики методом водного шликерного литья в пористые формы. Предложен способ получения высокоплотного водного шликера на основе кварцевого стекла путем его помола в шаровой...
Тип: Изобретение
Номер охранного документа: 0002513072
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.ba2d

Способ изготовления антенного обтекателя из стеклокерамики литийалюмосиликатного состава

Изобретение относится к производству керамических изделий радиотехнического назначения типа керамической оболочки головного антенного обтекателя скоростных зенитных и авиационных ракет. Техническим результатом изобретения является упрощение технологии изготовления и снижение температуры...
Тип: Изобретение
Номер охранного документа: 0002513389
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c33a

Способ изготовления изделий из кварцевой керамики

Изобретение относится к производству керамических изделий радиотехнического назначения из кварцевой керамики. Технический результат изобретения - повышение прочности и снижение пористости изделий из кварцевой керамики при сохранении других характеристик на высоком уровне. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002515737
Дата охранного документа: 20.05.2014
+ добавить свой РИД