×
29.04.2019
219.017.4737

Результат интеллектуальной деятельности: СПОСОБ КОНТАКТА ТЕКУЧИХ СРЕД В ПРОСТРАНСТВЕННОМ СТРУКТУРИРОВАННОМ ЭЛЕМЕНТЕ

Вид РИД

Изобретение

№ охранного документа
0002186617
Дата охранного документа
10.08.2002
Аннотация: Способ контакта текучих сред в пространственном структурированном элементе с объемами макроструктур, ограниченными микроструктурами, относится к процессам контакта текучих сред для их последующего разделения при абсорбции и ректификации между газом и жидкостью, при экстракции или разделении эмульсий, при сепарации и коалисценции мелкодисперсных капель жидкости в газовом потоке и может найти применение в газовой, нефтехимической, нефтяной, пищевой и других отраслях промышленности. Способ включает подачу текучих сред в элемент, их контактирование в объемах и на поверхностях макро- и микроструктур, организацию в микроструктуре безотрывного потока, по крайней мере, одной из жидких сред, обеспечение движения этого потока действием одного или нескольких силовых полей, отвод жидкой текучей среды из микроструктуры, а другой текучей среды - из макроструктуры. Способ обеспечивает повышение эффективности контакта путем уменьшения выноса одной из текучих сред другой текучей средой. 2 з.п. ф-лы, 3 ил.

Изобретение относится к процессам контакта текучих сред для их последующего разделения при абсорбции и ректификации между газом и жидкостью, при экстракции или разделении эмульсий, при сепарации и коалисценции мелкодисперсных капель жидкости в газовом потоке и может найти применение в газовой, нефтехимической, нефтяной, пищевой и других отраслях промышленности.

Известны способы контакта газа и жидкости в пространственных структурированных элементах, осуществляемые в устройствах: авт. св. 1042780, МКИ В 01 D 53/20, 16.02.82 г., авт. св. 1084035, МКИ В 01 D 53/20, В 01 D 3/32, 23.06.82 г. , патент 2150990, МПК В 01 D 53/74, 28.06.99 г., проспект научно-инженерной фирмы "Петон", Контактные устройства для ректификационных и абсорбционных аппаратов. Перекрестноточная регулярная насадка.

Недостатком этих способов является перекрестное течение жидкости и газа в микроструктуре (насадке), вследствие чего одной текучей средой (газом) из насадки выносится другая текучая среда (жидкость), то есть отсутствует безотрывное течение жидкости по микроструктуре.

Известен способ контакта газа и жидкости в регулярной насадке для тепломассообменных аппаратов (патент РФ 2113900, МПК 6 В 01 J 19/30, 27.06.98 г. ), прототип, в котором частично устранены вышеуказанные недостатки путем контакта текучих сред в пространственном структурированном элементе, в котором объемы макроструктур ограничены микроструктурами с подачей в элемент текучих сред (газа и жидкости) их контактирование в объемах и на поверхностях макро- и микроструктур без перекрестного течения жидкости и газа в насадке, в результате чего резко снижается вынос жидкости с газом из пространственного структурированного элемента.

К недостаткам этого способа следует отнести: отсутствие безотрывного течения жидкой среды от твердой поверхности, так как большая часть поверхности контакта является объемной твердой поверхностью; перетекание жидкости из микроструктуры (жгута) на поверхность пластин; срыв жидкости газовым потоком с поверхности листов, так как структурированная поверхность микроструктуры насадки (жгута) значительно меньше макроструктуры (поверхности листов).

Целью изобретения является повышение эффективности контакта путем уменьшения выноса одной из текучих сред другой текучей средой, и последующее разделение двух сред.

Поставленная цель достигается тем, что в способе контакта текучих сред в пространственном структурированном элементе с объемами макроструктур, ограниченными микроструктурами, включающий подачу текучих сред в элемент, их контактирование в объемах и на поверхностях макро- и микроструктур и отвод, в микроструктуре организуют безотрывный поток, по крайней мере, одной из жидких сред, движение которого обеспечивают действием одного или нескольких силовых полей, при этом жидкую текучую среду отводят из микроструктуры, а другую текучую среду из макроструктуры.

Безотрывный поток жидкой среды обеспечивают адсорбционным и (или) капиллярными свойствами структуры.

Обеспечивают движение потока жидкой среды в структуре, действуя на него гравитационным, электрическим, электромагнитным, волновым или другими полями.

Волновое поле создают, по крайней мере, одной из контактирующих текучих сред.

Организация в микроструктуре безотрывного потока, по крайней мере, одной из жидких сред, обеспечение движения этого потока в структуре действием одного или нескольких силовых полей, и отвод текучих сред из разных структур позволяют повысить эффективность контакта и последующего разделения двух сред за счет уменьшения выноса одной из текучих сред другой текучей средой.

Заявителю не известно способов контакта, в которых бы применение вышеуказанных приемов обеспечили безотрывное течение одной из жидких сред в микроструктуре.

На фиг.1,2,3 представлен пространственный структурированный элемент (три проекции), в котором происходит предложенный способ контакта.

Пространственный структурированный элемент 1 состоит из макроструктуры 2, ограниченной микроструктурой 3.

Способ реализуется следующим образом.

1. Одну из текучих сред, например газообразную, подают на пространственный структурированный элемент 1, состоящий из двух структур макроструктуры 2 и микроструктуры 3 снизу вверх (фиг.2. А), жидкую текучую среду подают на контакт навстречу движению газообразной (фиг. 2, Б). Текучие среды (газообразную и жидкую) контактируют при изменяющемся зигзагообразном движении и за счет инерционных сил они сталкиваются со стенками капилляров макро- и микроструктур 2 и 3. Жидкая среда, которая является гидрофильной по отношению к материалу микроструктур, смачивает твердую поверхность микроструктуры, из-за чего за счет сил поверхностного натяжения затягивает ее поверхность. Таким образом, образуют беспрерывное течение жидкой среды в микроструктуре и получают развитую поверхность контакта двух текучих сред (жидкой и газообразной). Причем силы поверхностного натяжения одной из текучих сред, а именно жидкости, больше сил другой текучей среды - газообразной, движущейся снизу вверх. Движение вниз по микроструктуре жидкой текучей среды, которая накапливается в микроструктуре, осуществляют под действием сил гравитации.

При недостаточности сил гравитации для осуществления движения безотрывного потока жидкой текучей среды в микроструктуре 3 создают волновое поле, по крайней мере, одной из контактирующих текучих сред (газообразной) путем вибрации стенок микроструктуры потоком газообразной текучей среды, для этого стенки микроструктуры 3 выполняют эластичными. Стенки микроструктуры 3 вибрируют при движении газообразной текучей среды и таким образом осуществляют принудительный отвод жидкой текучей среды.

Принудительное движение жидкой текучей среды выполняют с помощью постоянного электрического поля (тока), например, для организации движения водных растворов, которые являются электропроводной жидкостью. Жидкую текучую среду отводят из микроструктуры 3 и используют на следующей ступени контакта в другом структурированном элементе. Газообразную, текучую среду отводят по каналам макроструктуры 2.

2. В структурированном элементе 1 осуществляют контактирование двух жидких текучих сред. Для этого две жидкие текучие среды, например эмульсию, содержащую углеводородную, жидкую фазу, и водный раствор гликоля подают в пространственный структурированный элемент (фиг. 2. А). Поверхность микроструктуры 3 смачивается одной из жидких текучих сред. В движущемся потоке на поверхностях твердых макро- и микроструктур 2 и 3 осуществляют контактирование жидких текучих сред. При смачивании твердой поверхности микроструктуры 3 жидкая среда накапливается в ней и затягивает пространственные элементы микроструктуры, то есть происходит коллисценция капель жидкой среды. Движение образовавшегося в микроструктуре безотрывного потока жидкой текучей среды осуществляют действием сил гравитации или действием нескольких силовых полей, например электрического, и затем отводят по порам микроструктуры 3, а другую жидкую среду отводят по каналам макроструктуры 2.

Примеры.

1. В пространственный структурированный элемент, выполненный в виде пакета насадки с изменяющими направление каналами, образованными микроструктурами и исключающими прямой проскок текучих сред, сверху подают жидкость - регенерированный триэтиленгликоль (РТЭГ) концентрацией 98,4% массовых в количестве 3800 кг, а снизу - сырой природный газ с содержанием метана более 90% в количестве 168195 кг/ч при давлении 7,5 МПа и температуре 20oС.

Газ при контакте с жидкостью дробит ее на капли, при этом происходит контактирование газа с поверхностью жидкости при изменяющемся зигзагообразном движении текучих сред. За счет сил инерции капли жидкости сталкиваются со стенками микроструктур, смачивают ее и проникают в поры микроструктур. Решетку микроструктуры выбирают такого размера, что накопившаяся жидкость свободно стекает по порам микроструктуры под действием сил тяжести (гравитационных сил), то есть в микроструктуре, выполненной из объемно-пористого материала, организуют безотрывный поток стекающей жидкой среды - насыщенного триэтиленгликоля (НТЭГ). Отвод НТЭГ производят из микроструктуры на нижележащий структурированный элемент, где контакт с газом повторяется. Отвод проконтактировавшего газа производят на вышележащий структурированный элемент или из аппарата.

В результате применения предложенного способа контакта получают сухой газ в количестве 168110 кг/ч с точкой росы по влаге минус 20oС, и из микроструктуры отбирают НТЭГ с концентрацией 96,67% массовых.

2. В пространственный структурированный элемент, в котором в каналы, организованные микроструктурой подают эмульсию, содержащую водный раствор гликоля в количестве 3% объемных, в количестве 1 м2/ч при температуре 20oС и углеводородный конденсат в количестве 97об.%. В объемах и на поверхностях макро- и микроструктуры осуществляют их контакт. При контакте водный раствор смачивает микроструктуру, проникает и накапливается в ней. Накопившийся водный раствор под действием сил тяжести стекает вниз в микроструктуре. Таким образом, используя капиллярные свойства микроструктуры, в ней организуют безотрывный поток насыщенной водой эмульсии. Скопившуюся тяжелую жидкую среду (раствор гликоля) собирают и в количестве 2,999 об.% отводят в качестве готового продукта, оставшиеся углеводороды отбирают с верхней части насадки.

Таким образом, организация в микроструктуре пространственного структурированного элемента безотрывного потока, по крайней мере, одной из жидких сред и обеспечение движения этого потока в микроструктуре действием одного силового поля повысили эффективность разделения путем уменьшения выноса одной из текучих сред другой текучей средой, а отвод, по крайней мере, одной из двух жидких текучих сред из микроструктуры позволил использовать ее в качестве продукта на следующих ступенях контакта в других структурированных элементах.

1.Способконтактатекучихсредвпространственномструктурированномэлементесобъемамимакроструктур,ограниченнымимикроструктурами,включающийподачутекучихсредвэлемент,ихконтактированиевобъемахинаповерхностяхмакро-имикроструктурипоследущийотводжидкойтекучейсредыизмикроструктуры,адругойтекучейсредыизмакроструктуры,отличающийсятем,чтовмикроструктуреорганизуютбеспрерывныйбезотрывныйпринудительныйпотокзасчетдействияодногоилинесколькихсиловыхполей.12.Способпоп.1,отличающийсятем,чтопринудительныйпотокжидкойсредыобеспечиваютэлектрическим,электромагнитным,волновымилидругимиполями.23.Способпопп.1и2,отличающийсятем,чтоволновоеполесоздают,покрайнеймере,однойизконтактирующихсред.3
Источник поступления информации: Роспатент

Showing 11-17 of 17 items.
29.04.2019
№219.017.4770

Распределитель жидкости массообменных аппаратов

Изобретение предназначено для распределения жидкости в массообменных аппаратах и может найти применение в газовой, химической, нефтеперерабатывающей отраслях промышленности, в частности в колонных промывочных аппаратах для орошения насадок. Распределитель включает приемный карман, сообщенный с...
Тип: Изобретение
Номер охранного документа: 02191616
Дата охранного документа: 27.10.2002
09.05.2019
№219.017.5133

Переливное устройство

Переливное устройство относится к устройствам отвода жидкости с массообменных, сепарационных и фильтрующих тарелок на нижележащую ступень или в кубовую часть аппарата, может быть использовано в колонных аппаратах, например абсорберах осушки газа, сепараторах, фильтрах или секциях...
Тип: Изобретение
Номер охранного документа: 02158624
Дата охранного документа: 10.11.2000
09.05.2019
№219.017.5141

Колонна для проведения массообменных процессов

Колонна для проведения массообменных процессов относится к аппаратам для проведения массообменных процессов в системе газ - жидкость и может быть использована для ректификации, абсорбции в газодобывающей отрасли, нефтеперерабатывающей и нефтехимической промышленности. Колонна содержит корпус со...
Тип: Изобретение
Номер охранного документа: 02150990
Дата охранного документа: 20.06.2000
29.05.2019
№219.017.6aca

Способ осушки газа

Способ может быть использован для глубокой осушки природного или нефтяного газа. Включает двухступенчатую ректификацию насыщенного абсорбента, последующую подачу его в абсорбер двумя потоками, различными по объему и концентрации, при этом абсорбент высокой концентрации получают как верхний...
Тип: Изобретение
Номер охранного документа: 02155092
Дата охранного документа: 27.08.2000
09.06.2019
№219.017.807b

Способ регенерации насыщенного раствора абсорбента

Изобретение может быть использовано для извлечения водяных паров из газа в установках осушки природных и нефтяных газов при подготовке их к транспорту. Способ включает вывод из абсорбера насыщенного абсорбента, подачу его в десорбер, отбор раствора абсорбента с низа массообменной части...
Тип: Изобретение
Номер охранного документа: 02157276
Дата охранного документа: 10.10.2000
06.07.2019
№219.017.a92e

Способ работы газотурбинной установки

Способ работы газотурбинной установки включает изобарное сжигание топлива с воздухом, эжектирование газообразных продуктов сгорания водяным паром с получением парогазового рабочего тела, его расширение с совершением работы. Получение водяного пара производят из высоконапорной воды путем...
Тип: Изобретение
Номер охранного документа: 02193096
Дата охранного документа: 20.11.2002
06.07.2019
№219.017.a935

Способ обработки воды

Изобретение относится к экологичным способам обработки воды и может быть использовано в процессах умягчения, осветления, обесцвечивания и обезжелезивания воды в химической, пищевой, фармацевтической, нефтегазодобывающей и других отраслях промышленности, а также в жилищно-коммунальном хозяйстве....
Тип: Изобретение
Номер охранного документа: 02196740
Дата охранного документа: 20.01.2003
Showing 11-13 of 13 items.
09.06.2019
№219.017.807b

Способ регенерации насыщенного раствора абсорбента

Изобретение может быть использовано для извлечения водяных паров из газа в установках осушки природных и нефтяных газов при подготовке их к транспорту. Способ включает вывод из абсорбера насыщенного абсорбента, подачу его в десорбер, отбор раствора абсорбента с низа массообменной части...
Тип: Изобретение
Номер охранного документа: 02157276
Дата охранного документа: 10.10.2000
06.07.2019
№219.017.a92e

Способ работы газотурбинной установки

Способ работы газотурбинной установки включает изобарное сжигание топлива с воздухом, эжектирование газообразных продуктов сгорания водяным паром с получением парогазового рабочего тела, его расширение с совершением работы. Получение водяного пара производят из высоконапорной воды путем...
Тип: Изобретение
Номер охранного документа: 02193096
Дата охранного документа: 20.11.2002
06.07.2019
№219.017.a935

Способ обработки воды

Изобретение относится к экологичным способам обработки воды и может быть использовано в процессах умягчения, осветления, обесцвечивания и обезжелезивания воды в химической, пищевой, фармацевтической, нефтегазодобывающей и других отраслях промышленности, а также в жилищно-коммунальном хозяйстве....
Тип: Изобретение
Номер охранного документа: 02196740
Дата охранного документа: 20.01.2003
+ добавить свой РИД