×
29.04.2019
219.017.4644

Результат интеллектуальной деятельности: СПОСОБ ВЫПЛАВКИ БЕЗУГЛЕРОДИСТОЙ ЖАРОПРОЧНОЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и может быть использовано при производстве жаропрочных сталей для нужд энергетики и создания оборудования, работающего в условиях сверхкритических параметров пара. Способ включает загрузку в вакуумную индукционную печь шихтовых материалов, расплавление, выдержку металла под вакуумом в течение 20-30 мин при температуре, превышающей температуру ликвидус металла на 150-170°С при давлении 5·10-1·10 мм рт.ст., напуск инертного газа, причем раскислители и высокореакционные легирующие добавки вводят после снижения температуры до значений, превышающих температуру ликвидус на 100-110°С в атмосфере инертного газа при давлении 70-250 мм рт.ст., а раскисление металла осуществляют в три стадии сначала алюминием; затем щелочноземельными металлами и окончательное - редкоземельными металлами и борсодержащими лигатурами, а легирование азотом осуществляют после введения всех легирующих добавок, последующей откачки инертного газа, выдержки металла в вакууме в течение 7-10 минут путем введения азотсодержащей лигатуры, при парциальном давлении азота в атмосфере печи 600-700 мм рт.ст., выдержки металла в течение 5-7 минут до полного усвоения азота и его разливки. Способ позволяет выплавить сталь с содержанием углерода на уровне 0,001-0,009%, азота 0,05-0,1%, бора 0,003-0,01%, хорошо раскисленную с содержанием кислорода 0,0015-0,0010%, требуемого уровня жаропрочности. 5 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии и может быть использовано при производстве жаропрочных сталей с низким содержанием углерода преимущественно для нужд энергетики и создания оборудования, работающего в условиях суперсверхкритических параметров пара.

Одной из базовых проблем при создании тепловых энергоблоков с суперсверхкритическими параметрами уровня температур 650°С и давлении пара от 30 до 35 МПа является необходимость разработки жаропрочных и относительно экономичных конструкционных материалов, в том числе для пароперегревателей и паропроводов. В связи с этим поставлена задача разработки новой жаропрочной стали, обеспечивающей требуемый уровень длительной прочности σ105 не менее 98 Н/мм2 при температуре 650°С и длительной пластичности не менее 10%.

Жаропрочные стали с содержанием углерода выше 0,01% характеризуются тем, что упрочняющей фазой в них выступают карбиды, которые при рабочих температурах выше 540°С коагулируют, сильно увеличиваясь в размерах, тем самым разупрочняя материал. Поэтому для повышения длительной прочности жаропрочных сталей решили перейти от карбидного упрочнения к нитридно-боридному и обеспечить требуемый уровень свойств, необходимый современным энергетическим установкам. (Необходимо отметить, что повышение рабочей температуры пара в энергетических установках с 600°С до 650°С приводит к увеличению их КПД с 44 до 49%.)

Введение в состав стали азота приводит к необходимости проведения в вакуумной индукционной печи новой технологической операции - легирование азотом.

Известен способ выплавки безуглеродистой жаропрочной стали в вакуумной индукционной печи, включающий загрузку шихтовых материалов, откачку печи, расплавление, выдержку металла под вакуумом, напуск инертного газа, введение высокореакционных легирующих добавок, раскисление металла и его разливку (см. Ал.Г.Шалимов, И.Н.Готин, Н.А.Тулин. Интенсификация процессов специальной электрометаллургии, М. «Металлургия», 1988, с.63-74).

Однако этот способ обеспечивает содержание азота в готовой стали на уровне 0,005-0,007% и не предусматривает легирование ее азотом и процессе переплава. Кроме того, снижение содержания углерода в стали до уровня 0,001-0,009% приводит к смещению термодинамического равновесия между кислородом и углеродом в системе Fe-Cr-С-О в сторону увеличения содержания кислорода (до 0,028%). Это приведет к формированию большого количества неметаллических включений в стали, преимущественно оксидов и оксисульфидов, и, следовательно, к резкому снижению качественных характеристик металла (в том числе длительной прочности).

Предложенное техническое решение позволяет избежать недостатков известного аналога и предусматривает проведение следующих операций: загрузку в вакуумную индукционную печь шихтовых материалов, расплавление, выдержку металла под вакуумом в течение 20-30 мин при температуре, превышающей температуру ликвидус металла на 150-170°С при давлении 5·10-3-1·10-2 мм рт.ст., напуск инертного газа, введение высокореакционных легирующих добавок, раскисление металла, легирование его азотом и разливку, причем раскислители и высокореакционные легирующие добавки вводят после снижения температуры до значений, превышающих температуру ликвидус на 100-110°С в атмосфере инертного газа при давлении 70-250 мм рт.ст., а раскисление металла осуществляют в три стадии: сначала алюминием; затем щелочноземельными металлами и окончательное - редкоземельными металлами и борсодержащими лигатурами, а легирование азотом осуществляют после введения всех легирующих добавок, последующей откачки инертного газа, выдержки металла в вакууме в течение 5-6 минут путем введения азотсодержащей лигатуры, например феррохрома, при парциальном давлении азота в атмосфере печи 600-700 мм рт.ст., выдержки металла в течение 5-7 минут до полного усвоения азота и его разливки.

Способ предусматривает выплавку бузуглеродистой жаропрочной стали, легированной азотом, содержащей углерод, кремний, марганец, хром, кобальт, молибден, вольфрам, ванадий, ниобий, алюминий, никель, кальций, церий, азот, бор, фосфор, серу, свинец, олово, мышьяк, магний и железо, при следующем соотношении компонентов, мас.%: углерод от 0,001% до 0,009%; кремний от 0,005% до 0,10%; марганец от 0,2% до 0,4%; хром от 8,5% до 9,5%; кобальт от 2,5% до 4,0%; молибден от 0,4% до 0,6%; вольфрам от 1,8% до 3,0%; ванадий от 0,15% до 0,30%; ниобий от 0,04% до 0,09%; алюминий не более 0,015%; никель не более 0,2%; кальций от 0,005% до 0,05%, азот от 0,04% до 0,10%; церий от 0,02% до 0,05%; магний от 0,005% до 0,05%; бор и г 0,003% до 0,01%; фосфор не более 0,015%, сера не более 0,010%, свинец, олово, мышьяк не более 0,006% каждого; железо - остальное.

В качестве железосодержащей шихтовой составляющей используют железо рафинированное, например ЖР008 или ЖР003.

Парциальное давление азота в атмосфере печи создают путем напуска азота до значений 600-760 мм рт.ст, после выдержки металла в вакууме в течение 5-6 минут.

Окончательное раскисление металла осуществляют после введения азотсодержащей лигатуры и усвоения азота.

Разливку стали осуществляют в атмосфере азота при парциальном его давлении в разливочной камере 600-700 мм рт.ст.

Технический результат от предложенного способа заключается в повышении длительной прочности стали при работе в условиях суперсверхкритических параметров пара. Результат достигается тем, что выплавляют сталь с содержанием углерода на уровне 0,001-0,009%, азота - 0,05-0,1%, бора 0,003-0,01%, хорошо раскисленную с содержанием кислорода 0,0015-0,0010%, с низким содержанием неметаллических включений и достигают требуемого уровня характеристик жаропрочности этой стали (длительная прочность , длительная пластичность ).

Проведение всех операций при выплавке стали в индукционной печи в перечисленной последовательности при соблюдении температурно-временных характеристик и режимов поддержания заданной атмосферы в печи позволяет получить качественные стальные слитки без дефектов усадочного характера и газовых пузырей.

Авторами установлено, что проведение раскисления стали в три стадии дает наиболее желаемый эффект. Поскольку содержание углерода в исходных шихтовых материалах невелико, то рассчитывать на активное вакуум-углеродное раскисление не приходится, а держать металл под вакуумом в течение длительного времени при температуре 1650-1700°С экономически не выгодно, в том числе из-за угара легирующих компонентов. Необходимо ввести такое количество раскислителей, которое позволило бы снизить содержание кислорода по крайней мере до 0,001-0,0015%. В обычных сталях с этой ролью успешно справляются алюминий и кремний. Однако в нашем случае вследствие ограниченного содержания алюминия и кремния нужен дополнительный эффективный раскислитель из группы щелочноземельных металлов. Например, магний. Он обладает высокой раскислительной способностью, продукты взаимодействия его с кислородом легко выводятся из расплава (ассимилируются шлаком). Магний в количестве от 0,005% до 0,05% способствует активному раскислению. Кроме того, содержание магния в количестве от 0,05% до 0,005% способствует глобуляризации неметаллических включений, уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает ударную вязкость.

Использование бора в качестве раскислителя, как установлено авторами, повышает длительную прочность и длительную пластичность за счет растворения бора, как поверхностно-активного элемента, в граничных зонах, упрочняя границы зерен и замедляя протекание диффузионных процессов в этих участках. Использование для раскисления редкоземельных металлов позволяет снизить не только содержание кислорода, но и серы до 0,003%.

Поскольку растворимость азота в металле напрямую зависит от парциального давления азота над расплавом (закон Сивертса), то легировать им металл до значений предела растворимости нужно непременно в атмосфере азота, соответствующей или выше по парциальному давлению открытой выплавке. И разливка должна проходить в атмосфере азота, иначе после кристаллизации металл будет поражен газовой (азотной) пористостью.

По предлагаемому способу осуществили выплавку безуглеродистой жаропрочной стали в вакуумной индукционной печи садкой 25 кг. Разливали сталь в изложнице на слитки по массой по 25 кг. Химический состав металла приведен в таблице 1. Параметры плавки и результаты исследования металла приведены в таблице 2.

Таблица 1
Химический состав стали Х9К3В2МФБР, выплавленной в вакуумно-индукционной печи
Номер плавки Содержание элементов, % мас.
С Si Mn Cr Co W Mo V Nb Al В S Р N
прототип 0,0065 0,047 0,296 9,03 3,10 1,94 0,456 0,227 0,05 0,020 - 0,006 0,003 0,006
1 0,0050 0,049 0,282 9,09 3,10 2,02 0,462 0,227 0,067 0,010 0,008 0,006 0,003 0,075
2 0,0054 0,053 0,290 9,22 3,22 2,08 0,476 0,229 0,063 0,014 0,003 0,006 0,003 0,084
3 0,0052 0,057 0,279 9,00 3,13 2,03 0,466 0,219 0,066 0,012 0,007 0,006 0,003 0,085

Содержание кальция и магния в металле плавок 1, 2, 3 - на уровне 0,009-0,01, церия - на уровне 0,03%, а мышьяк, олово и свинец каждый менее 0,001%.

На основании проведенных исследований установлено, что предлагаемый «Способ выплавки безуглеродистой жаропрочной стали» позволяет выплавить сталь с содержанием углерода на уровне 0,001-0,009%, азота - 0,05-0,1%, бора 0,003-0,01%, хорошо раскисленную с содержанием кислорода 0,0015-0,0010%, с низким содержанием неметаллических включений. Такая сталь достигла требуемого уровня жаропрочности (длительная прочность , длительная пластичность ) и пригодна для работы в условиях сверхкритических параметров пара.

Источник поступления информации: Роспатент

Showing 51-60 of 123 items.
10.04.2015
№216.013.3865

Способ производства бесшовных труб размером 426×15-60 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхвысокими и сверхкритическими параметрами пара из стали марки 10х9мфб-ш

Изобретение относится к трубопрокатному производству. Способ включает выплавку полых слитков электрошлаковым переплавом, обточку и расточку их в полые слитки-заготовки размером 640×вн.440×3200±50, нагрев слитков-заготовок до температуры 1190-1200°С и прокатку их на ТПУ 8-16″ с пилигримовыми...
Тип: Изобретение
Номер охранного документа: 0002545925
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3876

Способ производства бесшовных горячекатаных труб на трубопрокатных установках с пилигримовыми станами для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара

Изобретение относится к трубопрокатному и металлургическому производствам. Полые слитки-заготовки ЭШП нагревают до температуры пластичности и прокатывают на пилигримовом стане. Прокатку производят в валках с диаметром бочки 1150 мм с получением труб размером 610×32-90 или 630×28-80 мм. Разность...
Тип: Изобретение
Номер охранного документа: 0002545942
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3880

Способ производства бесшовных горячекатаных труб диаметром 530 и 550 мм на трубопрокатных установках с пилигримовыми станами для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара

Изобретение относится к трубопрокатному производству. Снижение энергозатрат, повышение производительности пилигримовых станов, снижение расходного коэффициента металла и, как следствие, снижение стоимости котельных труб обеспечивается за счет того, что производят выплавку электрошлаковым...
Тип: Изобретение
Номер охранного документа: 0002545952
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.388b

Способ производства бесшовных труб размером 299×10-13 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из слитков электрошлакового переплава стали марки 10х9мфб-ш

Изобретение относится к трубопрокатному производству. Способ включает изготовление слитков-заготовок электрошлакового переплава и их термическую и деформационную обработку. Расширение размерного ряда производимых труб с механическими свойствами, превышающими требования существующих технических...
Тип: Изобретение
Номер охранного документа: 0002545963
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3891

Способ производства бесшовных горячекатаных труб размером 530×25-30 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из стали марки 10х9мфб-ш

Изобретение относится к трубопрокатному производству. Полые слитки электрошлакового переплава обтачивают и растачивают в полые слитки-заготовки размером 660хвн.490×3200±50 мм. Нагревают их до температуры 1180-1190°С и прокатывают на ТПУ 8-16" с пилигримовыми станами в передельные трубы размером...
Тип: Изобретение
Номер охранного документа: 0002545969
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3893

Способ производства бесшовных труб размером 465×15-25 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из слитков электрошлакового переплава стали марки 10х9мфб-ш

Изобретение относится к трубопрокатному производству. Методом ЭШП выплавляют полые слитки с соотношением диаметра и толщины стенки от 5,0 до 5,5, которые обтачивают и растачивают в полые слитки-заготовки с соотношением диаметра и толщины стенки от 5,8 до 6,6. Слитки-заготовки нагревают до...
Тип: Изобретение
Номер охранного документа: 0002545971
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e00

Способ производства бесшовных труб размером 299×10-13 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из стали марки 10х9мфб-ш

Изобретение относится к трубопрокатному производству. Полые слитки электрошлакового переплава обтачивают и растачивают в полые слитки-заготовки размером 500×вн.320×3200±50 мм. Слитки-заготовки нагревают до температуры 1180-1200°С и прокатывают на ТПУ 8-16” с пилигримовыми станами в передельные...
Тип: Изобретение
Номер охранного документа: 0002547360
Дата охранного документа: 10.04.2015
27.06.2015
№216.013.5ad7

Фитосбор седативного действия

Изобретение относится к фармацевтической промышленности, в частности к фитосбору седативного действия. Фитосбор содержит смесь травы пустырника пятилопастного, шишек хмеля, травы душицы обыкновенной и плодов боярышника, взятых в определенном количестве. Предложенный фитосбор обладает повышенным...
Тип: Изобретение
Номер охранного документа: 0002554796
Дата охранного документа: 27.06.2015
10.09.2015
№216.013.7795

Состав шихтовой заготовки жаропрочного сплава на основе никеля с равноосной структурой для литья рабочих лопаток газотурбинных установок

Изобретение относится к металлургии и может быть использовано для изготовления рабочих лопаток газотурбинных установок. Шихтовая заготовка содержит, мас.%: углерод 0,07-0,12, хром 12,9-13,5, кобальт 5,3-5,9, вольфрам 6,7-7,3, молибден 0,8-1,2, алюминий 3,2-3,5, титан 4,4-4,7, бор 0,010-0,015,...
Тип: Изобретение
Номер охранного документа: 0002562202
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.8120

Жаропрочный сплав на основе никеля для изготовления и ремонта лопаток газотурбинных установок

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-920°C, а также для ремонта...
Тип: Изобретение
Номер охранного документа: 0002564653
Дата охранного документа: 10.10.2015
+ добавить свой РИД