×
29.04.2019
219.017.461e

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ ЧЕРЕЗ НЕПРОЗРАЧНЫЕ ПРЕГРАДЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиотехнике и может использоваться в спасательных и иных работах для обнаружения живых движущихся людей. Достигаемый технический результат от использования изобретения заключается в повышении вероятности обнаружения движущегося объекта на фоне шумовых помех, повышении точности измерения расстояния до движущегося объекта. Сущность способа заключается в том, что осуществляют облучение исследуемой области импульсами сверхширокополосного радара и измерение эхо-сигнала от объекта, находящегося на заданном расстоянии от радара, при этом для обнаружения движения используется двумерная функция зависимости модуля разности соседних по времени измерений уровня эхо-сигнала от расстояния до объекта и времени наблюдения с последующим отображением ее на дисплее. 4 ил.

Изобретение относится к радиотехнике, а именно к способу обнаружения движущихся объектов через непрозрачные преграды и устройству для его осуществления. Наиболее эффективно его можно использовать в спасательных и иных работах при ликвидации последствий техногенных катастроф для обнаружения живых движущихся людей.

Известен способ графического представления обнаруженных через непрозрачные преграды (стены) объектов (патент США 7,339,516 В2, оп. 4 марта 2008 г.). Объект обнаруживается с помощью анализа его физических свойств и признаков в каждый конкретный момент времени. Совокупность этих свойств и признаков анализируется с помощью конкретных алгоритмов обнаружения, и результат анализа отображается на дисплее в условном графическом представлении (например, фигуры человека). Недостатком такого способа является использование информации об объекте только в текущий момент времени. Предыдущая история движения объекта не используется.

Известно также устройство, предназначенное для диагностики физиологических функций живых организмов, в частности для диагностики параметров дыхания пациентов (патент на изобретение РФ №2321341, оп. 06.10.2006). Работа датчика основана на использовании сверхширокополосного (СШП) радара. Датчик позволяет следить за дыханием даже перемещающегося пациента, что достигается путем сложной цифровой обработки входных сигналов. При этом в данном устройстве отсутствует возможность одновременного слежения за дыхательными движениями нескольких объектов в разных точках исследуемого пространства.

Известен взятый за прототип способ обнаружения движущихся объектов через непрозрачные преграды, реализованный в устройстве по патенту США №5361070, оп. 1.11.1994 г. Способ основан на использовании одномерного сверхширокополосного радара и измерении расстояния до объектов. Способ включает облучение исследуемой области импульсами СШП радара и измерение уровня эхо-сигнала от объекта, находящегося на заданном расстоянии от радара.

Известное устройство для обнаружения движущихся объектов через стены, взятое за прототип, содержит, как и патентуемое изобретение, тактовый генератор импульсов, постоянную линию задержки импульсов, генератор одиночных импульсов, передатчик, передающую антенну регулируемую линию задержки, генератор стробирующих импульсов, стробоскопический приемник и приемную антенну (патент США №5361070, оп. 01.11.1994 г.).

Недостатком прототипа (устройства) является то, как проявляется в нем характерный, особенно для одномерных СШП радаров, эффект, связанный с многолучевым распространением сигнала. Зондирующее СШП излучение, отраженное от объекта, может попасть на антенну приемника радара разными путями благодаря отражениям от разных предметов в исследуемой области. При этом устройство обнаруживает множество движущихся объектов на разных расстояниях. Минимальное расстояние соответствует пути распространения сигнала от устройства до объекта и обратно без дополнительных отражений. Однако суммарный сигнал на антенне приемника определяется взаимодействием всех принимаемых сигналов. При этом может оказаться, что эхо-сигнал может уменьшиться и даже совсем исчезнуть из-за взаимодействия (интерференции) с сигналами, прошедшими другими путями. В этот момент возможны пропуск цели или неправильное определение устройством расстояния до движущегося объекта из-за многолучевого распространения сигнала.

Недостатками способа, реализуемого устройством-прототипом, являются:

1. Определение наличия движущегося объекта производится в текущий момент времени без учета движения в предыдущие моменты времени, что не позволяет использовать эти данные для повышения чувствительности устройства на фоне электронных шумов.

2. Высокая вероятность неправильного определения расстояния до объекта вследствие многолучевого распространения эхо-сигнала.

3. Невозможность определения объектов по их дыхательным движениям.

Задачей, на решение которой направлены изобретения, является создание способа и устройства, позволяющие обнаруживать живых движущихся людей за непрозрачными стенами, в том числе по дыханию, которое можно считать разновидностью движения.

Целью (техническим результатом) изобретений (способа и устройства) является повышение вероятности обнаружения движущегося объекта на фоне шумовых помех, повышение точности измерения расстояния до движущегося объекта.

Это достигается тем, что в способе обнаружения движущихся объектов через непрозрачные преграды, включающем облучение исследуемой области импульсами сверхширокополосного радара и измерение эхо-сигнала от объекта, находящегося на заданном расстоянии от радара, согласно изобретению для обнаружения движения используется двумерная функция зависимости модуля разности соседних по времени измерений уровня эхо-сигнала от времени наблюдения и расстояния до объекта с последующим отображением ее на дисплее.

В частном случае для обнаружения периодических дыхательных движений используется цифровой анализатор спектра, а на экране дисплея визуализируется двумерная функция зависимости спектра переменной составляющей эхо-сигнала от расстояния и частоты.

Технический результат достигается также тем, что в сверхширокополосном радаре для обнаружения движущихся объектов через непрозрачные преграды, включающем тактовый генератор импульсов, постоянную линию задержки импульсов, генератор одиночных импульсов, передатчик, передающую и приемную антенны, регулируемую линию задержки, генератор одиночных стробирующих импульсов и стробоскопический приемник, согласно изобретению стробоскопический приемник последовательно соединен с блоком синхронизации и съема информации (БССИ), устройством цифровой обработки ее и дисплеем, а через блок синхронизации и съема информации соединен с регулируемой линией задержки.

Замена регулятора времени задержки и дифференциатора, содержащихся в устройстве-прототипе на блоке БССИ, устройство для обработки информации и дисплей позволяет измерить разностный полезный сигнал (от последовательных измерений уровня эхо-сигнала) как функцию расстояния до объектов и времени наблюдения и выполнить визуализацию этой функции на экране дисплея. Такая функция позволяет обнаружить движение в каждой точке исследуемого пространства путем вычисления модуля разности соседних по времени измерений уровня эхо-сигнала от расстояния и времени наблюдения.

Сущность изобретения и его преимущество иллюстрируется описанием примера исполнения и прилагаемыми графическими материалами, на которых изображено:

на фиг.1 - блок-схема устройства для обнаружения движущихся объектов через непрозрачные преграды по патенту США №5361070 (прототипа);

на фиг.2 - блок-схема устройства для обнаружения движущихся объектов через непрозрачные преграды;

на фиг.3 приведена визуализация сигнала движения объекта во времени, по вертикальной оси отложено расстояние до объекта, по горизонтальной - время наблюдения; при этом темный цвет соответствует минимальному уровню сигнала движения, светлый - максимальному; в верхней части фиг.3 приведена восстановленная траектория движения;

на фиг.4 приведена отображенная на экране дисплея функция визуализации спектра, в верхней - символическое отображение двух объектов, найденных по дыханию.

Изображеное на фиг.1 известное устройство по патенту США №5361070 для обнаружения движущихся объектов через стены на основе сверхширокополосного радара, взятое за прототип, содержит тактовый генератор импульсов 1, постоянную линию задержки импульсов 2, генератор одиночных импульсов 3, передатчик 4, передающую антенну 5, регулируемую линию задержки 6, генератор одиночных стробирующих импульсов 7, стробоскопический приемник 8, приемную антенну 9. Позиция 10 - отображающий объект. Устройство-прототип содержит также дифференциатор 11 и регулятор времени задержки 12. Наличие движения в точке на заданном расстоянии от передающей антенны определяет дифференциатор, вычисляющий разность последовательных измерений уровня эхо-сигнала. Несовпадение уровней указывает на перемещение объекта.

Патентуемое изобретение - сверхширокополосный радар (фиг.2) включает тактовый генератор импульсов 1, постоянную линию задержки импульсов 2, генератор одиночных импульсов 3, передатчик 4, передающую антенну 5, регулируемую линию задержки 6, генератор одиночных стробирующих импульсов 7, стробоскопический приемник 8, приемную антенну 9, подающие и принимающие сигнал от объекта 10, блок синхронизации и съема информации 11, устройство цифровой обработки информации 14 и дисплей 15. При этом стробоскопический приемник 8 последовательно соединен через блок синхронизации и съема информации 13 с устройством для цифровой обработки сигнала 14 и дисплеем 15, а также с регулируемой линией задержки.

Устройство работает следующим образом. Импульсы от генератора тактовых импульсов 1 одновременно поступают на постоянную линию задержки 2 и регулируемую линию задержки 6. С выхода постоянной линии задержки 2 импульсы подаются на генератор одиночных импульсов 3, а затем - на передающую антенну 4, которая излучает импульс в исследуемое пространство. Излученный электромагнитный импульс отражается от исследуемого объекта 10 и через приемную антенну 9 поступает на стробоскопический приемник 8. Выделение момента приема осуществляет импульс с генератора стробирующих импульсов 7. Этот импульс задержан относительно момента излучения импульса передатчиком 4 на некоторую величину τ регулируемой линией задержки 6. Временная задержка τ связана с требуемым расстоянием до исследуемого объекта L соотношением: τ=2×L/C, где С - скорость света.

Аналоговый сигнал со стробоскопического приемника 8 подается на БССИ.

Блок синхронизации и съема информации 11 управляет работой СШП радара, обеспечивая процесс периодического сканирования исследуемой области и съем данных в форме цифрового сигнала.

Данные сканирования поступают на устройство цифровой обработки информации 14, где формируется двумерная функция зависимости уровня эхо-сигнала от расстояния и времени. Такая функция хранит информацию о движениях в исследуемой области за все время наблюдения. Функция позволяет обнаруживать движение в каждой точке путем вычисления модуля разности соседних по времени измерений от расстояния и времени.

Эта функция выводится на дисплей 15, причем большей величине сигнала соответствует более светлый оттенок, а меньшей - величине сигнала - темный оттенок. (Другая возможность - отображение в псевдоцветах, когда нулевому уровню соответствует синий цвет, а максимальному - красный). Данная функция визуализации отображает движение объектов во всей области наблюдения за все время наблюдения.

Решение об обнаружении движущегося объекта принимает оператор, использующий свойства пространственной суммации сигнала своего зрительного анализатора (мозга).

Указанное свойство зрительного анализатора человека проявляется, к примеру, при визуальном анализе фотографий со спутников. Разрешающая способность фотографирующих устройств может быть недостаточной для отображения мелких компактных объектов, но протяженные тонкие объекты (к примеру, трубопроводы), ширина которых много меньше величины разрешения, хорошо обнаруживаются зрительным анализатором человека на фотографиях со спутников за счет эффекта пространственной суммации сигнала.

С помощью описанной выше функции визуализации изображения можно отбрасывать ложно обнаруженные движущиеся объекты. Критерием может служить задаваемая максимальная скорость перемещения объекта. Поэтому быстрые перемещения объекта на большие расстояния трактуются как ложные обнаружения.

Пример осуществления способа. Для обнаружения объектов по их дыханию также используется двумерная функция визуализации, однако, теперь в форме зависимости спектра полезного сигнала от расстояния и частоты. Для этого устройство цифровой обработки сигнала по завершении процесса сканирования проводит спектральный анализ переменной составляющей эхо-сигнала для каждого расстояния, и функция визуализации представляется как двумерная функция зависимости спектральной плотности от частоты и расстояния. Таким образом, по завершении процесса сканирования, можно найти все объекты в исследуемой области по их периодическому дыханию. Пример функции визуализации спектра приведен на фиг.4 в нижней части, а положение объектов, найденных по дыханию, приведено в верхней части. Обнаруженные объекты различаются частотой дыхания.

Способ обнаружения движущихся объектов через непрозрачные преграды, основанный на облучении исследуемой области импульсами сверхширокополосного радара, измерении уровней эхо-сигналов объектов, находящихся на заданных расстояниях от радара, и выявления наличия движения по несовпадению уровней замеренных эхо-сигналов, отличающийся тем, что осуществляют процесс периодического сканирования исследуемой области и съем данных в форме цифровых сигналов, цифровую обработку сигналов, формирование двумерной функции зависимости уровня отраженного сигнала от расстояния и времени, которую используют для обнаружения движения в каждой точке путем вычисления изменения (модуля) разности соседних по времени наблюдения измерений уровней эхо-сигнала, при этом в качестве критерия для принятия решения об обнаружении движения используют задаваемую максимальную скорость перемещения объекта, превышение которой объектом трактуется как ложное обнаружение.
Источник поступления информации: Роспатент

Showing 11-20 of 39 items.
27.06.2014
№216.012.d9fe

Способ изготовления смеси фракций окислителя из класса перхлоратов

Изобретение относится к подготовке окислителя из класса перхлоратов, применяемого для изготовления смесевого твердого ракетного топлива (СТРТ) зарядов РДТТ. Способ изготовления смеси фракций окислителя включает дозирование и смешивание крупных фракций с частицами размером 160-315 мкм и мелких...
Тип: Изобретение
Номер охранного документа: 0002521584
Дата охранного документа: 27.06.2014
10.02.2015
№216.013.23e5

Способ получения органического термостойкого наполнителя для термоэрозионностойкого бронепокрытия вкладного заряда смесевого твердого ракетного топлива

Изобретение относится к ракетной технике и касается разработки способа получения органического термостойкого наполнителя для обеспечения термоэрозионной стойкости бронепокрытия. Способ включает ступенчатое отверждение жидкой фенолоформальдегидной смолы резольного типа при нагревании в интервале...
Тип: Изобретение
Номер охранного документа: 0002540642
Дата охранного документа: 10.02.2015
27.07.2015
№216.013.65dc

Способ изготовления бронечехла для вкладного заряда из смесевого твердого топлива к ракетному двигателю и теплозащитный материал

Изобретение относится к ракетной технике, а именно к технологии изготовления бронечехла для бронирования вкладного заряда из смесевого твердого топлива (СТТ) к маршевому ракетному двигателю (РД) переносных зенитных ракетных комплексов (ПЗРК), а также к теплозащитному материалу для изготовления...
Тип: Изобретение
Номер охранного документа: 0002557629
Дата охранного документа: 27.07.2015
20.10.2015
№216.013.87af

Устройство для защиты от электромагнитного излучения

Изобретение относится к электронной технике и может быть использовано для создания экранов и панелей, поглощающих электромагнитное излучение (далее ЭМИ) в широком СВЧ-диапазоне. Техническим результатом от использования предложенного устройства для защиты от ЭМИ является снижение коэффициента...
Тип: Изобретение
Номер охранного документа: 0002566338
Дата охранного документа: 20.10.2015
27.02.2016
№216.014.bf82

Безоткатное оружие

Изобретение относится к области военной техники, а именно к безоткатному оружию. Безоткатное оружие имеет ствол в виде открытой с торцов трубы и снаряд с реактивным двигателем. На наружной поверхности ствола установлены конструктивные элементы - насадки, повышающие безопасность стреляющего...
Тип: Изобретение
Номер охранного документа: 0002576363
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c554

Быстродействующий широкодиапазонный инфракрасный микроболометрический детектор

Изобретение относится к инфракрасной технике и может быть использовано при изготовлении микроболометрических матриц, детектирующих излучение в двух инфракрасных (ИК) диапазонах с длинами волн 3-5 мкм и 8-14 мкм, соответствующих окнам прозрачности атмосферы. Инфракрасный микроболометрический...
Тип: Изобретение
Номер охранного документа: 0002574524
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2f73

Способ обработки поверхности боеприпасов

Изобретение относится к обработке поверхности боеприпасов. На осесимметричной поверхности боеприпаса путем лазерной абляции создают рельефную микроструктуру в виде ориентированных под углом α=15°-90° к оси боеприпаса борозд глубиной h до 50 мкм и с шагом t=20-70 мкм. Лазерным лучом воздействуют...
Тип: Изобретение
Номер охранного документа: 0002580576
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31d0

Способ изготовления упругого элемента микромеханического устройства

Изобретение может быть использовано для создания упругих подвесов, торсионов и других элементов (например, балок, мембран, струн) микромеханических устройств, например кремниевых гироскопов и акселерометров. Способ изготовления упругого элемента микромеханического устройства заключается в...
Тип: Изобретение
Номер охранного документа: 0002580910
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.813f

Способ смешения компонентов взрывчатого состава

Изобретение относится к смешению компонентов взрывчатых составов, в том числе смесевых ракетных твердых топлив (СРТТ). После подготовки компонентов осуществляют дозирование жидковязких и порошкообразных компонентов, включая взрывчатое вещество и окислитель, и их перемешивание. Порошкообразный...
Тип: Изобретение
Номер охранного документа: 0002602120
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8f4f

Твердотопливный заряд для микродвигателей

Изобретение относится к области ракетной техники и может быть использовано при проектировании твердотопливных микродвигателей. Твердотопливный заряд для микродвигателей представляет собой шашку твердого топлива со скоростью горения в пределах 0,10-0,20 м/с при давлениях 3,04-6,08 МПа на основе...
Тип: Изобретение
Номер охранного документа: 0002605482
Дата охранного документа: 20.12.2016
Showing 11-16 of 16 items.
13.01.2017
№217.015.8f4f

Твердотопливный заряд для микродвигателей

Изобретение относится к области ракетной техники и может быть использовано при проектировании твердотопливных микродвигателей. Твердотопливный заряд для микродвигателей представляет собой шашку твердого топлива со скоростью горения в пределах 0,10-0,20 м/с при давлениях 3,04-6,08 МПа на основе...
Тип: Изобретение
Номер охранного документа: 0002605482
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.9da5

Способ оценки остаточного ресурса металлических деталей

Изобретение относится к области испытательной техники и может быть использовано для прогнозирования остаточного ресурса деталей и элементов конструкций с помощью рентгенографического контроля на этапе их изготовления и эксплуатации в различных областях промышленности и техники, например...
Тип: Изобретение
Номер охранного документа: 0002610821
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.c1f1

Капельный холодильник-излучатель

Изобретение относится к устройствам отвода низкопотенциального тепла от систем космических аппаратов. Капельный холодильник-излучатель содержит теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель....
Тип: Изобретение
Номер охранного документа: 0002617868
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c295

Капельный холодильник-излучатель

Изобретение относится к устройствам отвода низкопотенциального тепла от систем космических аппаратов. Капельный холодильник-излучатель содержит теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель,...
Тип: Изобретение
Номер охранного документа: 0002617872
Дата охранного документа: 28.04.2017
03.10.2018
№218.016.8def

Способ работы капельного холодильника-излучателя

Изобретение относится к способам отвода тепла от космических аппаратов и применяется для работы капельного холодильника-излучателя. В способе работы капельного холодильника-излучателя, включающем нагрев теплоносителя капельного холодильника-излучателя в энергетической системе космического...
Тип: Изобретение
Номер охранного документа: 0002668386
Дата охранного документа: 28.09.2018
19.04.2019
№219.017.33c2

Способ определения относительных фазовых проницаемостей в пористой среде

Изобретение относится к исследованию процессов многофазной фильтрации жидкостей и газов в пористой среде, в частности к вытеснению нефти водой, и может быть использовано для нахождения относительных фазовых проницаемостей (ОФП) и функции Баклея. Способ определения относительных фазовых...
Тип: Изобретение
Номер охранного документа: 0002442133
Дата охранного документа: 10.02.2012
+ добавить свой РИД