×
29.04.2019
219.017.44c6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАГНИТНОЙ ПОМЕХИ НА КОСМИЧЕСКОМ АППАРАТЕ В ПОЛЕТЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к управлению полетом космических аппаратов с использованием данных о магнитном поле Земли (МПЗ). Способ включает измерение векторов напряженности МПЗ и направления на выбранную звезду (в оптическом диапазоне). Последний вектор должен быть отклонен от нормали к плоскости орбиты космического аппарата. Измеряют угол между этими векторами и на момент времени, когда этот угол является максимальным в диапазоне 0°…90°, определяют магнитную помеху по определенной формуле. В эту формулу входят заданные в абсолютной системе координат вектор направления на выбранную звезду и рассчитанный вектор напряженности МПЗ, а также измеренный вектор напряженности МПЗ в связанной системе координат. Для измерения вектора напряженности МПЗ может использоваться магнитометр СМ-8М, установленный на российском сегменте Международной космической станции. Для измерения направления на выбранную звезду могут использоваться звездные или солнечные датчики. Техническим результатом изобретения является возможность определения магнитной помехи КА в полете.

Изобретение относится к космической технике и может быть использовано для определения магнитной помехи, которая учитывается при планировании и проведении магниточувствительных научных экспериментов на борту космического аппарата (КА).

Основные способы определения магнитной помехи, вызванной собственной намагниченностью КА, используемые на данный момент, приведены в [1]. Существуют три основных способа.

Первый способ заключается в подвешивании КА на торсионе и наблюдении за его угловым отклонением за счет взаимодействия собственного дипольного магнитного момента КА с внешним магнитным полем. Способ имеет существенные недостатки: требует подвески сравнительно тяжелого объекта измерений, т.е. КА, на торсионе, причем диаметр торсиона для увеличения точности измерений должен быть как можно меньше, а длина как можно больше. Кроме того, возникает проблема точной статической балансировки КА, так как даже незначительный дебаланс очень сильно влияет на точность измерений.

Второй способ заключается во вращении КА внутри сферического объема, созданного двумя коаксиальными индукционными катушками с переменным шагом намотки. Одна катушка используется для компенсации магнитного поля Земли (МПЗ), вторая является измерительной, т.е. э.д.с., возникающая в ней при вращении КА, пропорциональна дипольному магнитному моменту, перпендикулярному оси вращения. Существенным недостатком данного способа является то, что подвес КА, вращающегося со скоростью порядка одного оборота в секунду, требует мощных поддерживающих устройств и поэтому пригоден только при испытаниях малых КА.

Наиболее близким из аналогов является третий способ, выбранный авторами за прототип и заключающийся в измерении магнитного поля КА и вычислении магнитного момента по данным измерений. Данный способ требует выполнения магнитной съемки величины компоненты Вr КА на расстоянии от КА α=const. Точки съемки должны покрывать сферу сеткой с интервалами по θ и λ в 10°-20°. Обычно используется упрощенная схема с неподвижным магнитным датчиком и установкой для поворота КА.

Все описанные способы-аналоги и прототип обладают существенным недостатком - наличием механических частей, необходимых для манипулирования КА, а также невозможностью применения их в полете. В то же время из-за стыковок КА с новыми аппаратами, перемещения грузов внутри КА и т.д. магнитная помеха меняется, и поэтому ее необходимо определять в полете.

Задачей предлагаемого способа является обеспечение определения магнитной помехи КА в полете.

Технический результат достигается тем, что в способе определения магнитной помехи на КА в полете, основанном на измерении вектора напряженности МПЗ , в отличие от известного измеряют в оптическом диапазоне направление на выбранную звезду , вектор направления на которую отклонен от нормали к плоскости орбиты КА, измеряют угол α между и и на момент времени, когда угол α является максимальным в диапазоне 0<α≤90°, определяют магнитную помеху Δ по формуле , где - вектор направления на выбранную звезду, заданный в абсолютной системе координат, - рассчитанный вектор напряженности МПЗ, заданный в абсолютной системе координат, - измеренный вектор напряженности МПЗ в связанной системе координат.

Предлагаемый способ основан на применении метода наименьших квадратов для определения компонент вектора магнитной помехи на основе большого набора совместных измерений вектора направления на выбранную звезду и вектора напряженности МПЗ . Требование проведения измерений в момент времени, соответствующий максимальному углу α в диапазоне 0<α≤90°, введено для уменьшения погрешностей определения компонент вектора магнитной помехи.

Считаем, что система определения ориентации КА помимо магнитометра включает датчик, показания которого дают дополнительные сведения об угловом положении объекта. Источниками информации об ориентации КА могут являться показания датчиков солнечной ориентации, местной вертикали, звезд и т.д.

Пусть вектор напряженности МПЗ вектор направления на выбранную звезду рассчитываются в базовой (абсолютной или орбитальной) системе координат с пренебрежимо малой ошибкой. Считаем также, что измерение вектора в связанной с объектом системе координат проводится достаточно точно. При наличии магнитной помехи Δ с магнитометра снимается сигнал

где вектор - вектор напряженности МПЗ, заданный в осях объекта. Используем очевидное соотношение:

тогда

Введем для удобства следующие обозначения:

где , , - компоненты искомого вектора в связанной системе координат, а , , - компоненты вектора .

Считая, что проводимые измерения независимые, равноточные и что ошибка измерений распределена по нормальному закону с известной дисперсией и нулевым математическим ожиданием, из соотношения (5) с учетом введенных обозначений (6) получим:

где n - количество проведенных измерений, a i - номер измерения.

Для удобства введем дополнительно обозначение:

В соответствии с методом наименьших квадратов составим выражение для невязки i-го измерения:

Характерной величиной наилучшего подбора величин , , является сумма квадратов невязок всех проведенных измерений:

В рамках метода наименьших квадратов компоненты вектора магнитных помех , , определяются из условия минимума суммы квадратов невязок (11). Минимум величины G находится из условия равенства нулю первых производных величины G по переменным , , :

Преобразуем систему уравнений (12) к следующему виду:

Полученные нормальные уравнения образуют систему неоднородных линейных уравнений. Для решения данной системы запишем ее в матричной форме:

Решение находится следующим образом:

Полученное выражение (15) позволяет определить компоненты вектора магнитной помехи в том случае, если вектор , иначе возникают трудности при обращении матрицы. Условию при использовании звездных датчиков соответствует случай движения КА в режиме орбитальной ориентации, при котором плоскость орбиты нормальна к направлению на выбранную звезду или имеется постоянная инерциальная ориентация объекта на всем обрабатываемом интервале полета.

Для расчета величины вектора напряженности МПЗ, входящего в соотношение (6), используется его аналитическое представление, основанное на разработанной Гауссом теории разложения магнитного потенциала Земли в ряд по сферическим функциям [2]:

где α - средний радиус Земли (6371.2 км), r, φ, θ - сферические координаты точки наблюдения - квазинормированный по Шмидту присоединенный полином Лежандра первого рода n-й степени и m-го порядка, , - коэффициенты, заданные используемой моделью МПЗ, N - количество гармоник разложения скалярного потенциала МПЗ.

Напряженность МПЗ определяется формулой:

Проекции вектора определяются по формулам:

где X', Y', Z' - проекции вектора напряженности МПЗ на оси географической системы координат.

Квазинормированные по Шмидту функции обозначены волнистой линией. Они связаны с ненормированными функциями следующими соотношениями:

Явный вид функций Лежандра известен, и они могут быть легко вычислены по прямым формулам:

Коэффициент нормировки сферических функций вычисляется по формуле:

,

где - наибольшее целое положительное число, содержащееся в .

Вековой ход МПЗ может быть учтен пересчетом коэффициентов по формулам:

Где t - момент времени, для которого ищутся коэффициенты; (t-2005) - время, исчисляемое в годах, начиная с начала 2005 г. до момента t. Международная аналитическая модель МПЗ позволяет определять компоненты вектора напряженности с точностью порядка 20-50 γ.

В настоящее время технически все готово для реализации предложенного способа. Для измерения вектора напряженности МПЗ может использоваться магнитометр СМ-8М, установленный на PC MKC.

Для измерения в оптическом диапазоне направления на выбранную звезду могут использоваться звездные или солнечные датчики, также установленные на MKC, типа БОКЗ, БОКС.

Имеющиеся в настоящее время на MKC измерительные и вычислительные средства позволяют измерять угол α между и , фиксировать момент, когда угол α является максимальным в диапазоне 0<α≤90° и определять магнитную помеху с применением МНК.

Предложенный способ позволяет определять магнитную помеху в полете, что важно, поскольку вследствие изменения конфигурации КА типа MKC в полете, перемещения грузов и сменой режимов работы бортовых систем величина и направление вектора магнитной помехи меняется и требуется ее периодическое определение.

Список литературы

1. Коваленко А.П. Магнитные системы управления космическими летательными аппаратами. М.: Машиностроение, 1975, 248 с.

2. ГОСТ 25645.126-85. ПОЛЕ ГЕОМАГНИТНОЕ. Модель поля внутриземных источников. М.: Государственный комитет СССР по управлению качеством продукции и стандартам.

Способ определения магнитной помехи на космическом аппарате в полете, включающий измерение вектора напряженности магнитного поля Земли , отличающийся тем, что измеряют в оптическом диапазоне вектор направления на выбранную звезду, который отклонен от нормали к плоскости орбиты космического аппарата, измеряют угол α между и , и на момент времени, когда угол α является максимальным в диапазоне 0<α≤90°, определяют магнитную помеху по формуле , где - вектор направления на выбранную звезду, заданный в абсолютной системе координат, - рассчитанный вектор напряженности магнитного поля Земли, заданный в абсолютной системе координат, - измеренный вектор напряженности магнитного поля Земли в связанной системе координат.
Источник поступления информации: Роспатент

Showing 241-250 of 370 items.
13.01.2017
№217.015.8f8c

Способ испытаний на электромагнитную совместимость электроракетной двигательной установки с информационными бортовыми системами космического объекта, системы записи и воспроизведения характеристик тока разряда электроракетных двигателей электроракетной установки для реализации способа

Предлагаемое изобретение относится к области использования электроракетных двигательных установок в составе космического аппарата и предназначено для проведения испытаний ее на электромагнитную совместимость с информационными бортовыми системами, например на помехоустойчивость бортового...
Тип: Изобретение
Номер охранного документа: 0002605277
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9005

Способ определения деформации корпуса космического аппарата в полете

Изобретение относится к космической технике. В способе определения деформации корпуса КА в полете фиксируют на внутренней поверхности иллюминатора КА в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности КА, попавшие в поле зрения фотокамеры, и...
Тип: Изобретение
Номер охранного документа: 0002605232
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b50c

Устройство защиты и контроля состояния оптических поверхностей объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения и предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей объектива оптических приборов без демонтажа защитной крышки...
Тип: Изобретение
Номер охранного документа: 0002614352
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b52b

Электрохимический генератор

Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на...
Тип: Изобретение
Номер охранного документа: 0002614242
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b57f

Устройство защиты и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения, предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора без...
Тип: Изобретение
Номер охранного документа: 0002614335
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5f1

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным маневрам космических аппаратов (КА) в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и выведение его на траекторию облета Луны с возвратом. При возвращении к Земле путём нескольких торможений в её...
Тип: Изобретение
Номер охранного документа: 0002614446
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b616

Способ управления транспортной космической системой

Изобретение относится к управлению работой транспортного космического корабля (ТКК), совершающего рейсы между орбитальной космической станцией (ОКС), находящейся вблизи планеты с атмосферой, и базовой станцией, расположенной, например на Луне. После выведения ракетой-носителем на опорную орбиту...
Тип: Изобретение
Номер охранного документа: 0002614466
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b63d

Устройство крепления и расфиксации развертываемых панелей

20 Изобретение относится к средствам фиксации и быстрого дистанционного разделения элементов конструкций космических аппаратов (КА), их частей и других изделий. Устройство содержит узлы крепления панелей и сочленения в виде стаканов с коническими впадинами и выступами, взаимодействующими между...
Тип: Изобретение
Номер охранного документа: 0002614465
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6f0

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным перелётам в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и перевод на траекторию перелёта к Луне. Затем КА выводят на селеноцентрическую орбиту. По пребывании там заданное время КА переводят на...
Тип: Изобретение
Номер охранного документа: 0002614464
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b700

Космический модуль

Изобретение относится преимущественно к космическим аппаратам (КА) с малыми космическими модулями (КМ) для оптико-электронного наблюдения Земли. КМ включает в себя призматический силовой корпус блочного типа. На торцевой панели установлена одноразовая (для гашения остаточной угловой скорости КА...
Тип: Изобретение
Номер охранного документа: 0002614461
Дата охранного документа: 28.03.2017
Showing 51-57 of 57 items.
01.07.2020
№220.018.2d0f

Система управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к бортовому оборудованию космического корабля (КК). Система управления содержит блок определения плотности атмосферы на высоте орбиты КК, блок определения положения центра масс и ориентации КК, блок определения границ области расположения объекта наблюдения относительно...
Тип: Изобретение
Номер охранного документа: 0002725012
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d29

Способ управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к бортовому оборудованию космического корабля (КК). Способ включает определение плотности атмосферы на высоте орбиты КК, положения центра масс и ориентации КК, прогнозирование границ области расположения объекта наблюдения относительно орбиты КК, формирование команд на...
Тип: Изобретение
Номер охранного документа: 0002725104
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d56

Система управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к бортовому оборудованию космического корабля (КК). Система управления содержит блок определения положения объекта наблюдения относительно КК и блок формирования команд управления аппаратурой наблюдения (АН). На иллюминаторе КК установлено устройство управления наведением,...
Тип: Изобретение
Номер охранного документа: 0002725009
Дата охранного документа: 29.06.2020
20.04.2023
№223.018.4ace

Способ мониторинга воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора

Изобретение относится к медицине, а именно к способу мониторинга воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют биомеханические параметры двигательной активности оператора, включая углы в суставах....
Тип: Изобретение
Номер охранного документа: 0002777476
Дата охранного документа: 04.08.2022
20.04.2023
№223.018.4ad8

Способ определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора

Изобретение относится к медицине, а именно к способу определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют в наземных условиях биомеханические параметры двигательной активности оператора, включая...
Тип: Изобретение
Номер охранного документа: 0002777477
Дата охранного документа: 04.08.2022
23.05.2023
№223.018.6cba

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления ПАН...
Тип: Изобретение
Номер охранного документа: 0002771488
Дата охранного документа: 05.05.2022
17.06.2023
№223.018.7ee6

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления снабжен...
Тип: Изобретение
Номер охранного документа: 0002772766
Дата охранного документа: 25.05.2022
+ добавить свой РИД