×
29.04.2019
219.017.44b8

Результат интеллектуальной деятельности: АППАРАТ ВНУТРИТРУБНОГО КОНТРОЛЯ И СПОСОБ ПЕРЕМЕЩЕНИЯ ЕГО В МАГИСТРАЛЬНОМ ГАЗОПРОВОДЕ С ЗАДАННОЙ РАВНОМЕРНОЙ СКОРОСТЬЮ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области техники неразрушающего контроля и используется для дефектоскопии магистральных газопроводов в процессе их эксплуатации. Аппарат внутритрубного контроля содержит гермоотсек, опирающийся на внутреннюю поверхность газопровода подпружиненными опорными элементами, выполненными в виде мотор-генератор-колес, размещенные снаружи и внутри гермоотсека, систему поиска дефектов, информационно-вычислительную систему, систему определения координат, систему регулирования скорости перемещения, систему электропитания с аккумуляторной батареей, датчик давления рабочей среды. Каждое мотор-генератор-колесо выполнено с возможностью обеспечения тормозного, двигательного и пассивного режимов работы и электрически соединено с системой регулирования скорости перемещения. Система поиска дефектов может быть построена на основе использования электромагнитно-акустических преобразователей. Перемещение аппарата по линейной части газопровода обеспечивается с минимальным поперечным смещением продольной оси аппарата относительно оси симметрии газопровода за счет пружинных блоков подвески мотор-генератор-колес. Коррекция скорости перемещения аппарата, в случае отклонения ее величины от заданной, осуществляется с помощью тормозного, двигательного и пассивного режимов работы мотор-генератор-колес, при независимом управлении каждого из мотор-генератор-колес в отдельности. Использование изобретения обеспечит перемещение аппарата в газопроводе с заданной равномерной скоростью, обеспечивающей высокую точность и эффективность его работы. 2 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к способам неразрушающего контроля качества магистральных газопроводов, в частности к способам внутритрубной дефектоскопии газопроводов с помощью дефектоскопов-снарядов (см. «Техника и технология транспорта и хранения нефти и газа» под редакцией д.т.н. В.Ф.Новоселова, М., Недра, 1992, с.210).

Известен дефектоскоп-снаряд (патент RU №2109206 С1, кл. 6 F17D 5/00, В08В 9/04, 1998.04.20), содержащий электрически связанные между собой блоки источников излучения, блоки чувствительных элементов, систему управления, систему определения координат, систему обработки и регистрации информации и систему электропитания. Дефектоскоп-снаряд содержит механизм, состоящий из двух модулей с гидроприводом осевого возвратно-поступательного перемещения одного модуля относительно другого, каждый модуль имеет опорные органы с узлами их радиального перемещения для фиксации в трубопроводе, при этом один из модулей снабжен выполненным с возможностью вращения в потоке транспортируемого продукта аэродинамическим винтом, вал которого соединен с валом гидронасоса, связанного рабочими магистралями через электрогидроклапаны с гидроприводом осевого возвратно-поступательного перемещения одного модуля относительно другого, с гидроприводами вращения блоков чувствительных элементов, с гидроприводом вращения электрогенератора системы электропитания, с гидроприводами узлов радиального перемещения опорных органов.

Для обеспечения перемещения и фиксации внутри трубопровода известный дефектоскоп-снаряд снабжен опорными органами с узлами их радиального перемещения, которые, в зависимости от режима передвижения дефектоскопа-снаряда в трубопроводе, с помощью гидропривода, соединенного с гидронасосом, обеспечивают необходимое усилие прижима опорных поверхностей к внутренней поверхности трубопровода и, тем самым, необходимую скорость перемещения.

Способ перемещения известного дефектоскопа-снаряда в трубопроводе реализуется в двух режимах: шаговом и непрерывном.

Для организации шагового режима передвижения дефектоскопа-снаряда опорные органы выполнены в виде колес, снабженных тормозами мгновенного действия, например ленточными, с гидроприводом, связанным рабочими магистралями через электрогидроклапаны с гидронасосом, причем электрогидроклапаны в качестве исполнительных элементов включены в контур системы управления. При шаговом режиме попеременно закрепляется относительно газопровода один из модулей дефектоскопа, в то время как другой модуль, свободный от закрепления, выдвигается на шаг вперед или назад относительно закрепленного модуля.

Для организации непрерывного режима передвижения дефектоскопа-снаряда под действием потока транспортируемого продукта и возможности регулирования скорости передвижения на узлах радиального перемещения опорных колес закреплены кривошипно-кулисные механизмы, кулисы которых через кривошипы, установленные на осях опорных колес, связаны с поршнями регуляторов скорости, полости которых соединены между собой через ограничители расхода. Регулирование расхода рабочей жидкости между полостями регуляторов скорости позволяет изменять в необходимом интервале тормозное усилие опорных колес и, тем самым, регулировать скорость передвижения дефектоскопа-снаряда.

Недостатками данного устройства и способа его перемещения по трубопроводу являются:

- отсутствие в составе устройства системы регулирования скорости движения,

- сложность обеспечения герметичности узлов гидроприводов и аэродинамического винта при воздействии высокого давления транспортируемого продукта.

Известно внутритрубное транспортное средство с автономным источником питания (патент RU №2300046 С1, кл. F17D 5/00, 2007.05.27), содержащее корпус с удерживающими его по оси трубопровода опорными колесами, стойки которых шарнирно закреплены на корпусе и снабжены гидроцилиндрами для перемещения колес поперек поверхности трубопровода, и с аэродинамическим винтом, соединенным с электрогенератором, по меньшей мере, одно опорное колесо снабжено электроприводом, содержащим электродвигатель с редуктором, вал которого передачей соединен с валом червячной передачи, у которой червячное колесо жестко соединено с опорным колесом, при этом электродвигатель подключен к электрогенератору. Работа, создаваемая на аэродинамическом винте потоком транспортируемого продукта, с помощью электрогенератора преобразуется в электроэнергию и поступает на электропривод опорных колес. Излишки электроэнергии заряжают аккумулятор.

Способ перемещения известного транспортного средства в газопроводе заключается в том, что воздействуют опорными колесами, имеющими электропривод, на внутреннюю поверхность газопровода.

Недостатками известного транспортного средства и способа его перемещения по трубопроводу являются:

- отсутствие в составе устройства системы регулирования скорости движения,

- сложность обеспечения герметичности узлов гидроцилиндров, редуктора и аэродинамического винта при воздействии высокого давления магистрального газа,

- наличие большого количества кинематических устройств и передач, работающих в условиях воздействия механических примесей, содержащихся в магистральном газе.

Наиболее близким к заявляемому решению по количеству общих признаков является внутритрубное транспортное устройство и способ перемещения его в магистральном трубопроводе с заданной равномерной скоростью (патент RU №2334563 С1, кл. В08В 9/049, 2008.09.27).

Внутритрубное транспортное устройство содержит корпус, состоящий из ствола с закрепленными на нем перегородкой и полым силовым элементом, манжету из эластомера, движители, выполненные в виде колес с приводом, включающим конические гипоидные редукторы, упругие компенсирующие муфты, раздаточный цилиндрический редуктор, размещенный в полом силовом элементе, электрический мотор-генератор, и с электрическим аккумулятором, размещенным в отсеке корпуса. Устройство содержит также блок контроля и управления приводом, размещенный в отсеке корпуса, пружинный механизм прижатия колес к поверхности трубопровода, подпружиненные центрирующие колеса, утилизатор энергии, выполненный в виде электрического нагревателя, веерную заслонку с электромеханическим приводом, установленную на перегородку, для чего в ней выполнены окна, перекрываемые заслонкой, датчик скорости перемещения устройства по трубопроводу, кинематически сообщенный с раздаточным редуктором, а также датчик давления рабочей среды.

Способ перемещения устройства включает подачу потока рабочей среды к устройству, создание перепада давления рабочей среды на нем, перемещение его усилием, создаваемым перепадом давления, и осевым усилием, создаваемым движителями, приводимыми в движение электромеханическим приводом с электрическим аккумулятором при воздействии их на поверхность трубопровода, а также контролирование скорости перемещения устройства и восстановление до нормы величины скорости в случае отклонения ее величины от заданной и поддержание ее на заданном уровне. Корректирование величины скорости осуществляют регулированием величины перепада давления рабочей среды и непосредственно усилия, создаваемого перепадом, и включением привода движителей на один из режимов работы: «холостой» ход, двигательный и генераторный режимы. При недостаточности регулирующих воздействий на поток рабочей среды для восстановления величины скорости перемещения до заданной подключают привод на одном из режимов: двигательный - для ускорения устройства, генераторный - для торможения. На генераторном режиме осуществляют подзарядку аккумулятора. При полной зарядке аккумулятора энергия торможения направляется в утилизатор энергии, где в виде тепла рассеивается в потоке рабочей среды.

Недостатками известного транспортного средства и способа его перемещения по трубопроводу являются:

- сложность обеспечения герметичности кинематических устройств и передач при воздействии высокого давления магистрального газа,

- наличие большого количества кинематических устройств и передач, работающих в условиях воздействия механических примесей, содержащихся в магистральном газе,

- наличие манжеты, соприкасающейся с внутренней поверхностью трубопровода и нарушающей ее защитное покрытие,

- наличие зазоров и люфтов в кинематических устройствах и передачах, снижающее точность регулирования и поддержания заданной скорости,

- отсутствие системы определения координат.

Техническим результатом изобретения является устранение указанных недостатков.

Это достигается тем, что в аппарате внутритрубного контроля, содержащем гермоотсек, опирающийся на внутреннюю поверхность газопровода подпружиненными опорными элементами, выполненными в виде мотор-генератор-колес, размещенные снаружи и внутри гермоотсека, систему поиска дефектов, информационно-вычислительную систему, систему определения координат, систему регулирования скорости перемещения, систему электропитания с аккумуляторной батареей, датчик давления рабочей среды, каждое мотор-генератор-колесо выполнено с возможностью обеспечения тормозного, двигательного и пассивного режимов работы (и электрически соединено с системой регулирования скорости перемещения), а система регулирования скорости перемещения использует для регулирования скорости аппарата внутритрубного контроля информацию о скорости ротора мотор-генератор-колеса, получаемую с датчиков положения ротора.

Мотор-генератор колеса могут быть выполнены в безредукторном исполнении на базе низкооборотных высокомоментных синхронных машин с возбуждением от постоянных магнитов (например, патент RU №2311715 С1, кл. Н02К 19/02, 2007.11.27) либо в безредукторном исполнении на базе низкооборотных высокомоментных синхронных реактивных двигателей, причем каждое мотор-генератор-колесо снабжено блоком динамического торможения.

Мотор-генератор-колеса размещаются в модулях подвески, установленных на корпусе гермоотсека аппарата в двух разнесенных поясах, так, чтобы обеспечить устойчивость аппарата при его перемещении в газопроводе. Каждый модуль подвески развернут относительно продольной оси аппарата на угол 1°, что позволяет принудительно вращать аппарат во время его перемещения в газопроводе.

В каждом поясе могут быть установлены, например, по шесть модулей подвески, расположенных один относительно другого под углом 60°, в плоскости, перпендикулярной продольной оси аппарата. Причем каждый модуль подвески снабжен пружинным блоком, позволяющим удерживать продольную ось аппарата вдоль оси симметрии газопровода в процессе движения аппарата в газопроводе при изменении его диаметра и конфигурации. Конструкция пружинных блоков обеспечивает нелинейную характеристику их жесткости.

Аппарат осуществляет дефектоскопию стенок газопровода с помощью системы поиска дефектов, выполненной в виде узлов намагничивания стенок газопровода и магниточувствительных датчиков либо, например, в виде шести электромагнитно-акустических преобразователей.

Электромагнитно-акустические преобразователи закрепляются в каретках, установленных на пилонах, размещенных на гермоотсеке один относительно другого под углом 60°, в плоскости, перпендикулярной продольной оси аппарата.

Каретки с электромагнитно-акустическими преобразователями выполнены с возможностью обеспечения постоянного зазора между поверхностью электромагнитно-акустического преобразователя и внутренней поверхностью трубы газопровода.

Электромагнитно-акустические преобразователи выполнены комбинированными, имеющими два измерительных канала: дефектоскопический и толщинометрический.

Конфигурация информационно-вычислительной системы аппарата позволяет обеспечить прием, первичную обработку и запоминание измерительной информации, поступающей от системы поиска дефектов. Одновременно информационно-вычислительная система с помощью акселерометров формирует сигнал, содержащий информацию о фактической скорости перемещения аппарата, данные углового положения аппарата внутри газопровода, и фиксирует данные системы определения координат.

Система регулирования скорости перемещения аппарата управляет частотой вращения мотор-генератор-колес. Принцип регулирования частоты вращения (поддержания постоянной частоты вращения при изменении баланса сил, действующих на аппарат при его перемещении по газопроводу) может быть основан на измерении фазной ЭДС мотор-генератор-колеса, пропорциональной частоте его вращения, определяемой с помощью датчиков положения ротора мотор-генератор-колеса. В качестве датчиков положения ротора колеса могут быть применены, например, датчики Холла, размещаемые на статоре колеса. Оцифрованный сигнал частоты вращения колеса поступает на микроконтроллер, управляющий работой электронных ключей. Управляющий ключ работает, например, в режиме широтно-импульсной модуляции (ШИМ) напряжения, подаваемого на обмотки статора мотор-генератор-колеса.

Длительность открытого и закрытого состояния ключа характеризует величину сопротивления нагрузки. Скважность ШИМ характеризует величину тока нагрузки, определяющего величину тормозного момента в тормозном режиме работы колеса. Управляя этой величиной, система регулирования скорости перемещения аппарата поддерживает частоту вращения мотор-генератор-колес в заданном интервале, соответствующем заданной скорости перемещения аппарата по газопроводу.

Система определения координат также использует для определения координат аппарата сигналы с датчиков положения ротора мотор-генератор-колес. При известном диаметре мотор-генератор-колеса и измеренной частоте его вращения можно вычислить путь, пройденный каждым колесом в отдельности. Система определения координат формирует за определенный временной интервал усредненную величину пройденного аппаратом пути, используя данные всех мотор-генератор-колес, и преобразует эту величину в координаты пути аппарата.

Система электропитания предназначена для обеспечения:

- самоходного перемещения аппарата с помощью мотор-генератор-колес в двигательном режиме работы;

- питания системы поиска дефектов;

- подзарядки аккумуляторной батареи от мотор-генератор-колес в тормозном режиме работы.

Датчик давления рабочей среды предназначен для измерения давления газа в газопроводе и выдачи необходимых сигналов в систему регулирования скорости перемещения аппарата.

Способ перемещения аппарата внутритрубного контроля в магистральном газопроводе с заданной равномерной скоростью, включающий введение аппарата в камеру запуска (приема), замену воздуха в камере запуска (приема) на природный газ с выравниванием давления в камере запуска (приема) и в газопроводе, выдвижение аппарата из камеры запуска (приема) в линейную часть газопровода, воздействие на конструкцию аппарата, частично перекрывающую поперечное сечение газопровода, потока транспортируемого газа, перемещение аппарата по линейной части газопровода силой, создаваемой скоростным напором потока транспортируемого газа и осевым усилием, создаваемым воздействием мотор-генератор-колес на внутреннюю поверхность газопровода, подзарядку аккумулятора системы электропитания, контроль скорости перемещения аппарата, коррекцию скорости перемещения аппарата в случае отклонения ее величины от заданной, выдвижение аппарата из линейной части газопровода в камеру приема (запуска), включение и выключение аппарата в работу по наличию или отсутствию в газопроводе давления рабочей среды сверх заданного минимального уровня, состоит в том, что выдвижение аппарата из камеры запуска (приема) в линейную часть газопровода и выдвижение аппарата из линейной части газопровода в камеру приема (запуска) осуществляют с помощью мотор-генератор-колес, работающих в двигательном режиме от аккумулятора системы электропитания, перемещение аппарата по линейной части газопровода обеспечивают с минимальным поперечным смещением продольной оси аппарата относительно оси симметрии газопровода за счет пружинных блоков подвески мотор-генератор-колес, коррекцию скорости перемещения аппарата, в случае отклонения ее величины от заданной, осуществляют с помощью тормозного, двигательного и пассивного режимов работы мотор-генератор-колес, при независимом управлении каждого из мотор-генератор-колес в отдельности.

Сущность изобретения поясняется чертежами.

На фиг.1 изображен общий вид аппарата внутритрубного контроля, продольный разрез.

На фиг.2 изображен модуль подвески мотор-генератор-колес.

На фиг.3 изображен модуль подвески, передающий усилие прижима колеса F к стенке трубы 1.

Аппарат внутритрубного контроля, изображенный на фиг.1, перемещающийся внутри газопровода 1 по направлению 2, содержит гермоотсек 3; мотор-генератор-колеса 4, размещенные в модулях подвески 5, снабженных пружинными блоками 6; систему поиска дефектов 7, внешние элементы которой, выполненные в виде кареток 9 с электромагнитно-акустическими преобразователями, установлены на пилонах 8, крепящихся к гермоотсеку; информационно-вычислительную систему 10; систему определения координат 11; систему регулирования скорости перемещения 12; систему электропитания с аккумуляторной батареей 13; датчик давления рабочей среды 14.

Способ перемещения аппарата внутритрубного контроля по магистральному газопроводу с заданной равномерной скоростью осуществляется следующим образом.

Перед вводом аппарата в камеру запуска (приема) газопровода в систему регулирования скорости движения 12 вводится уставка, соответствующая задаваемой скорости перемещения аппарата, например (1±0,05) м/с.

Аппарат вводится в камеру запуска (приема). В камере запуска (приема) производится замена воздуха на природный газ, с выравниваем давления в камере (запуска) приема и в газопроводе.

При достижении заданного минимального давления рабочей среды в камере запуска (приема) срабатывает датчик давления 14 и по его сигналу подается электропитание на систему регулирования скорости перемещения аппарата 12. Через заданный интервал времени от таймера включается двигательный режим мотор-генератор-колес 4. Электропитание подается от аккумуляторной батареи системы электропитания 13. Аппарат выдвигается из камеры запуска (приема) в линейную часть газопровода.

Перемещение аппарата по линейной части газопровода осуществляется под действием осевых (направленных вдоль оси газопровода) сил:

- приложенной к аппарату силой сопротивления, создаваемой скоростным напором потока транспортируемого газа;

- силой, создаваемой воздействием мотор-генератор-колес 4 на внутреннюю поверхность газопровода;

- проекцией силы веса аппарата на продольную ось газопровода.

Проходное сечение перепускаемого через аппарат газового потока, определяющее продольную составляющую силы давления газового потока на аппарат, остается постоянным в процессе движения аппарата по газопроводу.

Из перечисленных осевых сил, воздействующих на аппарат, управляемой (контролируемой) является сила, создаваемая воздействием мотор-генератор-колес 4 на внутреннюю поверхность газопровода.

В процессе перемещения аппарата по линейной части газопровода акселерометры, входящие в состав информационно-вычислительной системы аппарата, выдают в систему регулирования скорости перемещения 12 сигнал, содержащий информацию о фактической скорости перемещения, углах поворота аппарата относительно продольной оси и углах поворота аппарата при прохождении криволинейных участков газопровода.

При нарушении условий, обеспечивающих постоянную скорость перемещения аппарата в газопроводе, т.е. при изменении баланса сил, действующих на аппарат, например, изменении скорости потока перекачиваемого газа или тормозящего усилия, вызываемого, например, изменением наклона трассы газопровода или повороте газопровода, происходит нарушение равенства между заданной и фактической скоростями перемещения аппарата. Вследствие этого в системе регулирования скорости перемещения 12 появляется сигнал рассогласования, полярность которого зависит от соотношения фактической и заданной величин скорости и условий движения аппарата, что позволяет регулировать скорость перемещения аппарата включением тормозного, двигательного или пассивного режимов работы каждого мотор-генератор-колеса 4 в отдельности.

Тормозной режим включается тогда, когда скорость аппарата, определяемая давлением перепускаемого через аппарат газового потока, превысит максимальную заданную скорость перемещения. Для повышения эффективности тормозного режима в мотор-генератор-колеса встроены блоки динамического торможения.

В тормозном режиме мотор-генератор-колеса 4 работают как генераторы, подавая электропитание на систему поиска дефектов 7 и одновременно подзаряжая аккумуляторную батарею системы электропитания 13.

Степень заряженности аккумуляторной батареи измеряется при помощи датчиков напряжения. При достижении максимально допустимого напряжения подзарядка аккумуляторной батарей отключается, при возникновении необходимости их заряда - снова подключается.

Двигательный режим включается тогда, когда скорость аппарата, определяемая давлением перепускаемого через аппарат газового потока, достигнет минимального заданного значения. В двигательном режиме мотор-генератор-колеса 4 работают как двигатели аппарата, получая питание от аккумуляторной батареи системы электропитания 13.

Пассивный режим включается при необходимости, в процессе регулирования скорости перемещения аппарата, перехода от двигательного режима к генераторному режиму или наоборот.

Независимое управление режимами работы каждого из мотор-генератор-колес 4 в отдельности обеспечивает перемещение аппарата по газопроводу без проскальзывания мотор-генератор-колес в том числе и на криволинейных участках газопровода. Например, при повороте газопровода мотор-генератор-колеса, двигающиеся вдоль внешнего (большего) радиуса поворота, должны вращаться с увеличенной частотой, а колеса, двигающиеся вдоль внутреннего (меньшего) радиуса поворота, должны вращаться с уменьшенной частотой.

Система регулирования скорости перемещения 12 отслеживает состояние параметров электропривода мотор-генератор-колес по показаниям датчиков положения ротора колеса и управляет коммутирующими элементами, переключающими режимы работы колес. Температура обмотки статора мотор-генератор-колес измеряется при помощи датчиков температуры (термопар).

В процессе перемещения аппарата по линейной части газопровода центральный процессор (ЦП) системы регулирования скорости перемещения непрерывно обрабатывает информацию о скорости каждого колеса и вычисляет действующее значение скорости аппарата (в том числе и на поворотах газопровода).

Перераспределяя с помощью сигналов управления ШИМ мощности каждого колеса, ЦП обеспечивает необходимую стабилизацию скорости перемещения аппарата и коррекцию скорости перемещения аппарата, в случае отклонения ее величины от заданной.

Модуль подвески мотор-генератор-колес, изображенный на фиг.2, содержит мотор-генератор-колесо 4, установленное на балансире 15, и пружинный блок 6. Пружинный блок 6 и балансир 15 с помощью шарнирных соединений закреплены на основании 18, которое крепится к гермоотсеку аппарата. Пружинный блок 6 состоит из корпуса пружинного блока 16, штока пружинного блока 17 и двух параллельных пружин разной жесткости: пружины большей жесткости 19 и пружины меньшей жесткости 20, установленных в корпусе блока.

На фиг.3 изображен модуль подвески, передающий усилие прижима колеса F к стенке трубы 1.

Сила F имеет нелинейную ступенчатую характеристику в зависимости от величины поперечного перемещения колеса R, что обеспечивается конструкцией пружинных блоков: при уменьшении величины R до номинальной величины, близкой к внутреннему радиусу трубы, к усилию пружины малой жесткости 20 подключается усилие пружины большой жесткости 19.

Это позволяет в пределах рабочего диапазона перемещений колеса:

- обеспечить необходимое усилие прижима опорных поверхностей (бандажей) колес к поверхности трубопровода для передачи необходимого осевого усилия мотор-генератор-колес;

- минимизировать поперечное смещение оси аппарата относительно оси трубопровода за счет нелинейной (ступенчатой) зависимости силы F от R;

- удерживать продольную ось аппарата вдоль оси трубы газопровода в процессе движения аппарата при изменении (в пределах диапазона 21) диаметра и конфигурации трубы.

По окончании перемещения по линейной части газопровода аппарат вводится в камеру приема (запуска) с помощью двигательного режима мотор-генератор-колес.

Давление газа в камере приема (запуска) сбрасывается. При достижении заданного минимального давления рабочей среды в камере запуска (приема) срабатывает датчик давления 14 и по его сигналу снимается электропитание с бортовых систем аппарата.

Как указывалось выше, дефектоскопия стенок газопровода может осуществляться с помощью блоков источников излучения и чувствительных элементов, выполненных, например, в виде узлов намагничивания стенок газопровода и магниточувствительных датчиков. В этом случае контроль стенок газопровода может проводиться в наведенном или в остаточном магнитных полях. Например, для контроля в наведенном магнитном поле блоки источников излучений представляют собой магнитную систему, намагничивающую стенки трубы до состояния насыщения, а поля рассеяния дефектов намагниченной стенки регистрируются с помощью чувствительных элементов, встроенных в магнитную систему и размещенных между ее полюсами.

В предлагаемом аппарате дефектоскопия стенок газопровода осуществляется с помощью блоков источников излучения и чувствительных элементов, выполненных виде комбинированных электромагнитно-акустических преобразователей, имеющих два измерительных канала: дефектоскопический и толщинометрический. Комбинированный электромагнитно-акустический преобразователь позволяет обнаруживать дефекты на наружной и внутренней поверхностях, а также внутренние дефекты стенки труб с одновременным измерением толщины стенки трубы.

Применение предлагаемого аппарата внутритрубного контроля позволит осуществить перемещение аппарата в магистральном газопроводе с заданной равномерной скоростью и поддержание ее величины с высокой точностью с помощью тормозного, двигательного и пассивного режимов работы мотор-генератор-колес, при независимом управлении каждого из мотор-генератор-колес в отдельности.

Предлагаемый способ перемещения аппарата и система поиска дефектов, построенная на применении метода дефектоскопии с использованием электромагнитно-акустических преобразователей, в совокупности позволяют повысить достоверность получаемых данных о дефектах стенки трубы.

Кроме этого, производительность газопровода в период проведения инспекции с применением предлагаемого аппарата практически сохраняется.

Мотор-генератор-колеса, являющиеся опорными элементами аппарата, обеспечивают движение качения по внутренней поверхности газопровода, что позволяет минимизировать степень воздействия на стенку трубы массы перемещающегося аппарата и использовать его для диагностики газопроводов, имеющих внутреннее защитное покрытие трубы.

Система электропитания аппарата, используя генераторный режим работы мотор-генератор-колес, обеспечивает повышенные энергетические потребности системы поиска дефектов с одновременным подзарядом аккумуляторной батареи.

Источник поступления информации: Роспатент

Showing 91-100 of 124 items.
09.05.2019
№219.017.4ce0

Устройство для закачки и отбора газа на подземном хранилище

Изобретение относится к области эксплуатации подземных хранилищ газа, создаваемых в растворимых породах, например в каменной соли, и предназначено для ускорения процесса закачки и обеспечения пиковых отборов газа. Технический результат заключается в создании оптимальных условий течения газовых...
Тип: Изобретение
Номер охранного документа: 0002384504
Дата охранного документа: 20.03.2010
09.06.2019
№219.017.7a47

Способ технического обслуживания высокотехнологичного оборудования на основе мониторинговых систем диагностирования

Изобретение относится к области эксплуатации высокотехнологичного оборудования преимущественно роторного типа и может быть использовано для формирования систем управления эксплуатацией оборудования по его техническому состоянию. На первом этапе способа с использованием, например, стационарной...
Тип: Изобретение
Номер охранного документа: 0002381475
Дата охранного документа: 10.02.2010
09.06.2019
№219.017.7a6c

Способ увеличения полезного объема подземного резервуара, созданного в растворимых породах через буровую скважину

Изобретение относится к сооружению и эксплуатации подземных резервуаров, создаваемых в растворимых породах через буровую скважину, в частности в каменной соли, и может быть использовано в нефтяной, газовой и других отраслях промышленности при подземном хранении сжатого газа, в том числе...
Тип: Изобретение
Номер охранного документа: 0002384505
Дата охранного документа: 20.03.2010
09.06.2019
№219.017.7b19

Способ создания и эксплуатации подземных хранилищ газа в истощенных нефтяных и нефтегазоконденсатных месторождениях

Изобретение относится к газовой и нефтяной промышленности и может быть использовано при создании и эксплуатации подземных хранилищ газа (ПХГ) на базе истощенных нефтяных и нефтегазоконденсатных месторождений. Способ включает закачку в хранилище и отбор из него газа через скважины. Далее при...
Тип: Изобретение
Номер охранного документа: 0002377172
Дата охранного документа: 27.12.2009
09.06.2019
№219.017.7b27

Способ осушки полости газопровода после гидравлических испытаний

Изобретение относится к транспорту газа по магистральному газопроводу и может быть использовано при строительстве магистральных газопроводов после гидравлических испытаний для их осушки. Способ отличается тем, что с целью повышения эффективности осушки газопровод первоначально вакуумируют до...
Тип: Изобретение
Номер охранного документа: 0002373466
Дата охранного документа: 20.11.2009
09.06.2019
№219.017.7bab

Устройство для установки цементного моста

Изобретение относится к области бурения и капитального ремонта скважин. Обеспечивает повышение качества установки цементного моста и повышение надежности работы устройства. Устройство содержит патрубок со сквозными отверстиями в средней и нижней частях, верхнюю втулку, башмак и нижнюю втулку,...
Тип: Изобретение
Номер охранного документа: 0002331756
Дата охранного документа: 20.08.2008
09.06.2019
№219.017.7c65

Тампонажный раствор

Изобретение относится к тампонажным растворам, используемым при цементировании обсадных колонн газовых, газоконденсатных или нефтяных скважин в зоне продуктивного пласта при умеренных температурах. Технический результат - получение тампонажного раствора с пониженной водоотдачей в забойных...
Тип: Изобретение
Номер охранного документа: 0002322471
Дата охранного документа: 20.04.2008
09.06.2019
№219.017.7c84

Способ прогнозирования изменения коэффициента сверхсжимаемости пластового газа в процессе разработки газоконденсатных месторождений

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам проектирования разработки газоконденсатных месторождений (ГКМ) с высоким содержанием конденсата в пластовом газе (ПГ). Техническим результатом изобретения является повышение точности и получение исходных данных...
Тип: Изобретение
Номер охранного документа: 0002326242
Дата охранного документа: 10.06.2008
09.06.2019
№219.017.7cad

Способ регулирования параметров катодной защиты участков подземных трубопроводов

Изобретение относится к области защиты подземных сооружений от коррозии, в частности, к регулированию потенциалов катодной защиты участков подземных трубопроводов. Способ включает снятие катодной поляризационной кривой, подбор и поддержание выбранного потенциала катодной защиты, при этом подбор...
Тип: Изобретение
Номер охранного документа: 0002327821
Дата охранного документа: 27.06.2008
09.06.2019
№219.017.7d0f

Способ получения одоранта для природного газа

Изобретение относится к способу получения одоранта для природного газа из меркаптансодержащих углеводородов. Получение одоранта для природного газа осуществляют таким образом, что смесь природных меркаптанов подвергают фракционированию в две стадии с получением паровой и жидкой фаз, при этом...
Тип: Изобретение
Номер охранного документа: 0002419479
Дата охранного документа: 27.05.2011
Showing 31-33 of 33 items.
10.04.2020
№220.018.13f3

Способ намагничивания и сборки кольца хальбаха ротора электромашины (варианты)

Изобретение относится к электротехнике, к электрическим машинам. Технический результат состоит в повышении э.д.с. и удельной мощности при небольших величинах тока якоря электромашины за счет намагничивания и сборки кольца Хальбаха ротора по оптимальной схеме, обеспечивающей наибольшую...
Тип: Изобретение
Номер охранного документа: 0002718537
Дата охранного документа: 08.04.2020
01.05.2020
№220.018.1aa2

Электромашина с ротором, созданным по схеме хальбаха

Изобретение относится к области электротехники. Технический результат – улучшение энергетических характеристик. Электромашина с ротором, созданным по схеме Хальбаха, содержит узел обмотки, состоящий из множества катушек, причем множество катушек расположены в форме кольца, и ротор, включающий в...
Тип: Изобретение
Номер охранного документа: 0002720233
Дата охранного документа: 28.04.2020
23.07.2020
№220.018.3592

Электрореактивная двигательная установка

Изобретение относится к области реактивных двигательных установок космических и низкоорбитальных летательных аппаратов с низкой энерговооруженностью. Электрореактивная двигательная установка, содержащая корпус, диффузор, расположенный в передней части корпуса, тепловую камеру с высокочастотными...
Тип: Изобретение
Номер охранного документа: 0002727103
Дата охранного документа: 20.07.2020
+ добавить свой РИД