×
29.04.2019
219.017.435b

Результат интеллектуальной деятельности: ИЗМЕРЕНИЕ ТОЛЩИНЫ СТЕНКИ, В ЧАСТНОСТИ СТЕНКИ ЛОПАТКИ, ПРИ ПОМОЩИ ТОКОВ ФУКО

Вид РИД

Изобретение

№ охранного документа
0002418963
Дата охранного документа
20.05.2011
Аннотация: Изобретение относится к способу оценки толщины стенки полой детали типа лопатки газотурбинного двигателя, по меньшей мере в одной точке, имеющей определенный радиус кривизны в этой точке, внутри интервала радиусов кривизны и определенных значений толщины, заключающийся в том, что определяют величины импеданса электрической цепи, образованной датчиком токов Фуко, наложенным на стенку, вводят эти величины на вход блока цифровой обработки с нейронной сетью. Согласно изобретению параметры нейронной сети определяют предварительно путем отладки на калиброванных плитках, имеющих заданные радиусы кривизны и заданные значения толщины, находящиеся в упомянутых интервалах. Такой способ позволит учесть эффект кривизны измеряемой детали. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области газотурбинных двигателей и предназначено для измерения толщины стенок полых деталей, таких, как лопатки, в частности, лопатки турбины, при помощи токов Фуко.

Лопатки турбины высокого давления имеют все более сложную геометрию, которая характеризуется, в частности, наличием системы внутренних каналов, предназначенных для охлаждения лопатки путем циркуляции воздуха в этих каналах, наличием внутренних перегородок и использованием изменяющейся кривизны. После изготовления лопатки толщина ее наружных стенок, расположенных над каналами охлаждения, должна быть оценена при помощи того или иного способа неразрушающего контроля, чтобы была обеспечена механическая жесткость этих стенок. При этом погрешность измерений должна быть достаточно малой. Так, например, для стенок, толщина которых имеет величину в диапазоне от 0,3 мм до 1,2 мм, допускается погрешность измерений, составляющая менее 25 мкм.

Известным способом измерения является томография в рентгеновских лучах. Однако недостатком этого метода является слишком большая продолжительность выполнения операций. Контроль одной полой лопатки требует реализации последовательности сечений, каждое из которых занимает несколько минут, на множестве различных высот по длине этой лопатки. Такое техническое решение не может рассматриваться как средство, пригодное для систематического контроля, особенно в условиях, когда не будет соблюдаться требуемая точность измерений.

Другой известный способ измерений, основанный на использовании ультразвука, также не подходит в данном случае, поскольку результаты измерений сильно искажаются вследствие анизотропии материала, то есть, задачи обеспечения требуемой точности измерений не будут решены, а также вследствие ручного характера измерений. Кроме того, способ зависит от таких изменяющихся факторов, как собственный опыт оператора, калибровка аппаратуры и возможность воспроизведения.

В данном случае хорошо подходит технология измерений при помощи токов Фуко, то есть для измерения параметров детали, изготовленной из монокристаллического материала, и решает задачу обеспечения точности измерений. В частности, электропроводность материалов при нормальной температуре окружающего воздуха не подвергается влиянию кристаллической ориентации. Однако здесь необходимо принимать во внимание геометрические характеристики, специфические для данной детали, поскольку множество различных параметров может исказить результаты измерений:

- локальная кривизна лопатки;

- наличие перегородок в непосредственной близости от точки измерений;

- относительное позиционирование между датчиком и измеряемой деталью.

Проблема, связанная с этим последним пунктом, может быть разрешена путем использования достаточно надежных средств точной механики.

Заявителем было разработано средство измерения, позволяющее устранить искажения полученных результатов, связанные с наличием перегородок. Был предложен магнитный датчик, имеющий адаптированную соответствующим образом U-образную форму, который обеспечивает излучение в некотором наиболее подходящем в данном случае направлении. В патентном документе ЕР 1167917 раскрыт способ измерения толщины стенки полой лопатки, заключающийся в том, что прикладывают два магнитных полюса датчика токов Фуко на стенке, расположенных на одной линии параллельно к упомянутым перегородкам, причем эти магнитные полюса снабжены катушками, соединенными между собой последовательно, перемещают упомянутый датчик на стенке, перпендикулярной к этим перегородкам, регистрируют сигнал, формируемый этим датчиком, и определяют на основе этого сигнала толщину стенки с использованием предварительно выполненной калибровки. Все эти операции осуществляют на основе измерений, выполненных на эталонных стенках, содержащих перегородки. В то же время, выполненные таким образом калибровки используются при отладке нейронной сети. Эта нейронная сеть, однажды параметрированная соответствующим образом путем этой отладки, обеспечивает оценку толщины стенки, когда на ее вход прикладывают сигнал, который формируется датчиком, соответствующий измеренному импедансу.

Искусственная нейронная сеть представляет собой модель численного расчета, осуществляемого на компьютере и инспирированного функционированием истинных биологических нейронов. Эта сеть состоит из нейронов, связанных между собой при помощи входов и выходов. Более конкретно, один искусственный нейрон N представляет собой элементарный процессор, связанный с одним или несколькими входами е, с которыми связаны весовые коэффициенты W, и только с одним выходом s. Величина сигнала на выходе зависит от сигналов на входах с учетом их весовых коэффициентов и от систематической ошибки b в соответствии с выражением s=f(w·е+b), где f представляет собой функцию активации, определяемую программным обеспечением нейрона N. Таким образом, данные циркулируют в нейронной сети, будучи изменяемыми в каждом нейроне, через который они проходят. Эти нейроны распределены последовательно расположенными слоями и связаны в цепь с нейронами предшествующего слоя и последующего слоя.

Модель, используемая в упомянутом выше патентном документе, образована выходным слоем С2 с одним нейроном, выдающим желаемый выходной сигнал, то есть толщину, и некоторым скрытым слоем С1, образованным несколькими нейронами, питаемыми величинами импеданса, активного сопротивления и/или реактивного сопротивления, полученными из сигнала, выдаваемого датчиком токов Фуко. Функции, выполняемые нейронами, представляют собой тождество для слоя С2:f(w·е+n)=w·е+b, и гиперболический тангенс для слоя С1:f(w·е+b)=tаnh(w·е+b).

Отладка осуществляется на калиброванной плитке, содержащей плоскую поверхность, образованную параллельными полосами возрастающей толщины, и снабженной на своей задней стороне ребром жесткости, аналогичным упомянутым перегородкам. При этом датчик токов Фуко прикладывают к этой калиброванной плитке для того, чтобы получить эталонные сигналы, соответствующие значениям импеданса, и на основе которых определяют и корректируют параметры, весовые коэффициенты и систематические ошибки данной нейронной сети. Отладка может быть осуществлена при помощи соответствующих алгоритмов таким образом, чтобы данная сеть выдавала на выходе величину толщины, известную в каждой точке данной калиброванной плитки в функции сигналов, выдаваемых упомянутым датчиком.

Однако остается один последний фактор, который необходимо принимать во внимание в случае использования детали, имеющей значительную кривизну: при измерении на такой детали формируется воздушный зазор между плоской поверхностью датчика и искривленной поверхностью подвергающейся измерению детали, который создает погрешность измеренного сигнала. Поэтому, желательно иметь возможность преодолеть эту погрешность.

Технической задачей настоящего изобретения является создание способа измерения, способного учесть эффект кривизны поверхности измеряемой детали.

В соответствии с предлагаемым изобретением способ оценки толщины стенки полой детали, имеющей искривленную поверхность, типа лопатки газотурбинного двигателя, по меньшей мере в одной точке, имеющей определенный радиус кривизны в этой точке, в частности, внутри интервала определенных радиусов кривизны и определенных значений толщины, заключается в том, что определяют величины импеданса электрической цепи, образованной датчиком на токах Фуко, наложенным на стенку, и вводят эти величины на вход блока цифровой обработки типа нейронной сети, способ характеризуется тем, что параметры этой нейронной сети определяют предварительно путем отладки на калиброванных плитках, имеющих заданные радиусы кривизны в интервале радиусов кривизны упомянутой поверхности, и заданные значения толщины.

Предлагаемое изобретение может быть использовано, в частности, для оценки толщины стенки лопатки газотурбинного двигателя, радиус кривизны которой имеет величину, превышающую или равную 10 мм, но составляющую менее 100 мм, при том, что эта кривизна может быть вогнутой или выпуклой в зависимости от того, находится ли упомянутый датчик на нижней поверхности или на верхней поверхности лопатки.

В соответствии с другой характеристикой предлагаемого изобретения данный способ применяется для оценки толщины стенки лопатки газотурбинного двигателя, причем упомянутая толщина стенки имеет величину в диапазоне от 0,1 мм до 2 мм.

Для того чтобы иметь возможность не использовать коррекцию, которая будет представлять собой функцию характера используемого материала, упомянутые калиброванные плитки предпочтительно изготовлены из того же материала, что и лопатка.

В соответствии с другой характеристикой предлагаемого способа для измерения детали типа лопатки газотурбинного двигателя, имеющей внутренние перегородки, используют датчик, представляющий собой магнитный сердечник U-образной формы, каждая ветвь которого снабжена измерительной катушкой, более конкретно, ветви этого сердечника разведены на расстояние, по меньшей мере равное расстоянию между упомянутыми перегородками.

В последующем изложении предлагаемое изобретение будет описано более подробно и со ссылками на приведенные в приложении чертежи, на которых:

Фиг.1 изображает схематический вид в разрезе лопатки газотурбинного двигателя с внутренними каналами, предназначенными для обеспечения циркуляции охлаждающей текучей среды, согласно изобретению;

Фиг.2 - общий вид варианта выполнения датчика, используемого для измерения толщины стенки при помощи токов Фуко, согласно изобретению;

Фиг.3 и 4 - примеры выполнения калиброванной плитки, используемой для отладки нейронной сети (вид спереди и вид в разрезе), согласно изобретению.

На фиг.1 схематически представлена полая лопатка 1, наружная стенка 10 которой является искривленной и которая содержит внутренние перегородки 12, определяющие, в частности, расположенные между этими перегородками и наружными стенками каналы 14, предназначенные для циркуляции охлаждающего воздуха. Расположение и толщина перегородок не являются одинаковыми от одной перегородки к другой. При этом возможны многочисленные варианты конфигураций таких перегородок. То же самое можно сказать и о кривизне стенки, которая изменяется более или менее существенным образом как вдоль хорды лопатки, так и в направлении между ее корневой частью и ее свободным концом. Как было указано выше, важно иметь возможность знать в любой точке толщину стенки лопатки в том случае, когда она изготовлена методом литья.

Способ в соответствии с предлагаемым изобретением позволяет измерить или по меньшей мере обеспечить возможность оценки толщины стенок 10 в любой точке, применяя для этого способ измерения с использованием токов Фуко. Способ заключается в том, что формируют электрический контур, содержащий генератор переменного тока, соответствующий датчик 20 и вольтметр, предназначенный для регистрации электрического напряжения, возникающего на клеммах датчика. Датчик располагают напротив стенки, которая влияет на импеданс электрического контура. При помощи вольтметра измеряют величины, зависящие, через импеданс контура, от токов Фуко, которые возникают на прилегающем участке детали при воздействии электромагнитной индукции катушек датчика. Таким образом, измеренные величины зависят от характеристик стенки. Затем эти величины обрабатывают соответствующим образом, чтобы по ним оценить толщину.

Используемый датчик 20 в предпочтительном варианте реализации схематически представлен на фиг.2. Этот датчик содержит магнитный сердечник 22 с высокой магнитной проницаемостью, имеющий U-образную форму и квадратное или прямоугольное поперечное сечение. Две катушки 23 и 24 размещены на ветвях сердечника и электрически соединены между собой последовательно. Таким образом, датчик излучает в некотором заданном направлении, в результате чего снижается эффект наличия перегородок.

Ширина магнитного контура между двумя полюсами имеет величину, близкую к ширине перегородок или превышающую эту ширину. Датчик 20 перемещают точно по точкам измерения, и ось между двумя U-образными полюсами поддерживают параллельно направлению расположения перегородок.

Структура датчика с его U-образным магнитным контуром позволяет сформировать магнитное поле, направленное в основном параллельно оси, образованной двумя полюсами U-образной конструкции. Ориентируя в каждой точке измерения два полюса датчика параллельно перегородкам, обеспечивают таким образом сигнал, относительно незначительно возмущенный этими перегородками, поскольку токи Фуко при этом оказываются ортогональными по отношению к перегородкам и слабо проникают в них. И наоборот, ортогональное расположение влечет за собой высокую чувствительность к наличию перегородок. Предпочтительно датчик используют в его так называемом "параллельном" режиме. Совершенствуют, если это необходимо, точность оценки, располагая искривленные калиброванные плитки с перегородками так, как более подробно будет указано ниже.

Были выполнены испытания с датчиком, имеющим полюса квадратного поперечного сечения размером 1 мм на 1 мм и с расстоянием между полюсами, составляющим 1 мм.

Однако здесь будет отмечено, что в той мере, в какой предлагаемое изобретение применяется к определению толщины стенки, представляющей некоторый радиус кривизны, но не обязательно примыкающие изнутри перегородки, использование любого другого датчика также входит в рамки предлагаемого изобретения.

Чтобы обеспечить сканирование всех точек измерения и перпендикулярность датчика с необходимой точностью и надежностью по отношению к подлежащей измерению поверхности, датчик предпочтительно удерживают при помощи многоосевой механической системы, в частности, при помощи системы, имеющей пять осей свободы. Сканирование предпочтительно осуществляют точка за точкой. В каждой точке сигнал регистрируют, после чего датчик перемещают на следующую точку измерения.

Если электрическое напряжение, измеренное вольтметром, имеет величину V, и сила электрического тока, проходящего через упомянутые катушки, имеет величину I, выполняется следующее соотношение: Z0 = V0/I0+R0+jХ0, где Z0 - импеданс данной электрической цепи; R0 - активное сопротивление этой электрической цепи; Х0 - реактивное сопротивление этой электрической цепи при отсутствии подлежащей измерению детали; j2 = 1. Аналогичным образом выполняется соотношение Zс=Vс/Iс=Rс+jХс в том случае, когда датчик приложен к подлежащей измерению детали.

Толщина стенки оценивается при помощи средств цифровой обработки с обратной моделью. Под "обратной моделью" следует понимать математическую модель, которая весьма общим образом связывает следствие с причиной, в отличие от прямой модели, которая идет от причины к следствию. В рассматриваемом варианте обратная модель выдает толщину стенки (причина) на основе импеданса (который представляет собой следствие существующей толщины стенки и других параметров лопатки). Этот тип модели известен для решения проблем оценки параметров на основе измерений. Такая модель может быть создана посредством базы данных, как это и было сделано. Эта модель использует в качестве входных данных импеданс датчика, и предпочтительным образом нормализованный импеданс, и в качестве выходных данных использует оцененную толщину стенки.

Таким образом, обратная модель представляет собой математическую функцию и, предпочтительно, нейронную сеть или многочленную модель, параметры которой регулируются на основе данных токов Фуко, полученных на основе измерений, осуществляемых на калиброванных плитках, которые покрывают искомые диапазоны толщины и кривизны.

На фиг.3 и 4 представлена калиброванная плитка 30, используемая для отладки нейронной сети. Калиброванная плитка 30 имеет форму части цилиндра, в частности, половины цилиндра, с круглым поперечным сечением, радиус которого представляет собой радиус кривизны и который был выбран внутри интервала радиусов кривизны на лопатке. Стенка калиброванной плитки имеет несколько значений толщины 31, 32, 33 и т.д. Эта толщина возрастает ступенчатым образом вдоль оси калиброванной плитки. Значения толщины также выбираются в функции интервала значений толщины, подлежащей измерению. Калиброванные плитки используются в вогнутом положении и в выпуклом положении. Предпочтительно, материал калиброванных плиток представляет собой тот же самый материал, из которого изготовлены подлежащие измерению детали, или по меньшей мере материал, обладающий такой же электрической проводимостью. Однако ничто не препятствует тому, чтобы измерения были выполнены на калиброванных плитках, имеющих электрическую проводимость, отличную от электрической проводимости подлежащих измерению деталей. Действительно, нормализованный импеданс зависит только от σ и от f в форме их произведения. Компенсация отклонения электрической проводимости при этом может быть реализована путем модификации частоты сбора информации на данной калиброванной плитке по отношению к частоте сбора информации, которая используется затем на подлежащей измерению детали.

Затем осуществляют отладку нейронной сети, измеряя величины функции импеданса электрической цепи, в которую встроен датчик. Электрическая цепь модифицирована токами Фуко, которые возникают в измеряемой детали и которые сами зависят от толщины калиброванных плиток. Знание толщины калиброванных плиток позволяет вывести из этой информации величины параметров сети при помощи соответствующего итеративного алгоритма. Этот алгоритм основан, например, на расчете градиента отклонения (погрешности) между толщиной, выдаваемой нейронной сетью, и реальной толщиной калиброванной плитки в рассматриваемой точке измерения.

Датчик с параллельным выравниванием по отношению к перегородкам имеет относительно небольшую чувствительность по отношению к этим перегородкам. При этом необязательно располагать калиброванные плитки, представляющие перегородки, для эталонирования датчика. Таким образом, использование калиброванных плиток полуцилиндрической формы оказывается достаточным. Калиброванные плитки с перегородками, например, разрезанные соответствующим образом лопатки, характеризующиеся метрологическим образом, позволяют, однако, повысить точность измерения, если в этом есть необходимость. Упомянутая обратная модель изучает и корректирует, по меньшей мере частично, эффект наличия перегородок, который является несущественным, но не нулевым. Для еще большего совершенствования эксплуатационных характеристик используют датчик с ортогональным выравниванием по отношению к перегородкам в дополнение к предшествующему способу. Этот способ обеспечивает возможность для нейронной сети, благодаря весьма различному влиянию перегородок в этих двух способах, идентифицировать и корректировать эффект наличия перегородок после эталонирования на искривленных калиброванных плитках с перегородками.

Источник поступления информации: Роспатент

Showing 911-920 of 934 items.
29.06.2019
№219.017.9fab

Статор турбинной установки, содержащий ступень выходных направляющих лопаток, приводимых в движение посредством ротационного венца с автоматической центровкой, компрессор, содержащий вышеуказанный статор, и турбинная установка

Статор турбинной установки содержит картер, ступень направляющих лопаток с регулируемыми углами установки, венец приведения в движение и направляющую. Направляющие лопатки перемещаются посредством венца приведения в движение, установленного на внешней стороне картера и соединенного с лопатками...
Тип: Изобретение
Номер охранного документа: 0002454548
Дата охранного документа: 27.06.2012
29.06.2019
№219.017.9fb1

Динамическое щеточное уплотнение, турбина, содержащая такое уплотнение, и газотурбинный двигатель

Изобретение относится к уплотнительной технике, в частности, для обеспечения непроницаемости зазора между ротором и статором. Уплотнение содержит кожух для щетины, размещенный на роторе или статоре. Щетинки подвергаются, с одной стороны, входному давлению, а с другой стороны, выходному...
Тип: Изобретение
Номер охранного документа: 0002454558
Дата охранного документа: 27.06.2012
29.06.2019
№219.017.a04e

Контуры охлаждения для рабочих лопаток газотурбинных двигателей

Рабочая лопатка газотурбинного двигателя имеет в своей центральной части контур охлаждения внутренней стороны и контур охлаждения наружной стороны. Контур охлаждения внутренней стороны включает в себя, по меньшей мере, одну первую и одну вторую полости внутренней стороны, проходящие радиально и...
Тип: Изобретение
Номер охранного документа: 0002403402
Дата охранного документа: 10.11.2010
29.06.2019
№219.017.a056

Упрочняющая волоконная структура для детали из композиционного материала и деталь, содержащая эту структуру

Группа изобретений к цельнотканной упрочняющей волоконной структуре для изготовления детали из композиционного материала и детали, включающей данную структуру. Волоконная структура имеет внутреннюю или срединную часть и часть, примыкающую к внешней поверхности или поверхностному слою структуры,...
Тип: Изобретение
Номер охранного документа: 0002409468
Дата охранного документа: 20.01.2011
29.06.2019
№219.017.a05e

Устройство крепления системы впрыскивания на донной части камеры сгорания турбореактивного двигателя и способ такого крепления

Устройство крепления системы впрыскивания на донной части камеры сгорания турбореактивного двигателя содержит дефлектор, припаянный к донной части упомянутой камеры сгорания. Дефлектор содержит кольцевую часть, имеющую ребро, образующее круговой уступ удержания, ориентированный в направлении...
Тип: Изобретение
Номер охранного документа: 0002406935
Дата охранного документа: 20.12.2010
29.06.2019
№219.017.a072

Сборка кольцевой камеры сгорания турбомашины

Кольцевая камера сгорания (10) включает в себя наружную и внутреннюю осевые стенки (26, 28), соединенные вверх по потоку головкой камеры (30). Головка камеры имеет коэффициент теплового расширения, отличный от коэффициента теплового расширения осевых стенок. Головка камеры снабжена множеством...
Тип: Изобретение
Номер охранного документа: 0002400674
Дата охранного документа: 27.09.2010
29.06.2019
№219.017.a099

Капот для сопла газотурбинного двигателя, содержащий треугольные элементы с точкой изгиба для снижения шума реактивной струи, сопло газотурбинного двигателя, газотурбинный двигатель

Кольцевой капот сопла газотурбинного двигателя содержит множество фигурных элементов, выполненных в продолжении задней кромки капота и отстоящих друг от друга в окружном направлении. Каждый фигурный элемент имеет контур по существу треугольной формы с основанием, образованным частью задней...
Тип: Изобретение
Номер охранного документа: 0002435055
Дата охранного документа: 27.11.2011
29.06.2019
№219.017.a0a4

Конструкция кулачкового соединения для камеры сгорания газотурбинного двигателя, камера сгорания, содержащая такую конструкцию, и газотурбинный двигатель

Камера сгорания газотурбинного двигателя содержит дно камеры, в котором выполнено, по меньшей мере, одно сквозное и по существу круглое отверстие, систему впрыска, связанную с отверстием, и отражатель, установленный в отверстии с задней стороны дна камеры при помощи кольцевой втулки. Система...
Тип: Изобретение
Номер охранного документа: 0002435106
Дата охранного документа: 27.11.2011
29.06.2019
№219.017.a0a5

Система разгрузки компрессора низкого давления газотурбинного двигателя

Двухконтурный газотурбинный двигатель, в частности авиационный двухконтурный турбореактивный двигатель, содержит между каналом первичного потока и каналом вторичного потока промежуточный конструктивный кожух, расположенный в осевом направлении между компрессором низкого давления и компрессором...
Тип: Изобретение
Номер охранного документа: 0002435058
Дата охранного документа: 27.11.2011
29.06.2019
№219.017.a0a9

Конструкция камеры сгорания для газотурбинного двигателя, имеющей дефлектор с выступающей кромкой, камера сгорания газотурбинного двигателя, содержащая вышеуказанную конструкцию, и газотурбинный двигатель

Конструкция камеры сгорания для газотурбинного двигателя содержит донную часть камеры сгорания, в которой выполнено, по меньшей мере, одно по существу круглое отверстие, дефлектор, установленный с задней по потоку стороны этой донной части камеры сгорания в упомянутом отверстии при помощи...
Тип: Изобретение
Номер охранного документа: 0002435105
Дата охранного документа: 27.11.2011
+ добавить свой РИД