×
29.04.2019
219.017.426f

Результат интеллектуальной деятельности: СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, онкологии и может быть использовано для фотодинамической терапии (ФДТ) опухолей. Для этого пациенту вводят фотосенсибилизатор. Затем облучают патологический участок световым излучением с длиной волны, равной длине волны спектрального максимума поглощения фотосенсибилизатора. При этом патологический участок дополнительно облучают световым излучением с длиной волны, отличающейся от длины волны спектрального максимума поглощения на 7-15 нм. Проведение такой терапии позволяет повысить эффективность ФДТ опухолей больших размеров, особенно при их большой толщине, за счет более полного разрушения всех слоев опухоли и равномерного распределения фотодинамического воздействия по глубине патологического очага. 3 з.п. ф-лы.

Настоящее изобретение относится к медицине, а более конкретно к способам фотодинамической терапии (ФДТ) опухолей.

Известен способ фотодинамической терапии опухолей, включающий системное введение пациенту препарата - фотосенсибилизатора, избирательно накапливающегося в опухоли, а затем облучение патологического участка световым излучением с длиной волны, примерно равной длине волны спектрального максимума поглощения фотосенсибилизатора. Поглощение молекулами фотосенсибилизатора светового излучения приводит к генерации в опухоли синглетного кислорода или других активных кислородных частиц, являющихся цитотоксическими агентами и разрушающими клетки и сосуды опухоли [Robert A. Weersink, Arjen Bogaards, Mark Gertner, Sean R.H. Davidson, Kai Zhang, George Netchev, John Trachtenberg, Brian Wilson "Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of prostate: Clinical experience and practicalities". Journal of Photochemistry and Photobiology B: Biology 79 (2005), p.211-222]. Этот способ наиболее близок к предлагаемому и поэтому выбран в качестве ближайшего аналога.

При ФДТ опухолей больших размеров, особенно при их большой толщине (порядка 10 мм и более) спад интенсивности света в глубину опухоли из-за поглощения света в верхних слоях сенсибилизированной ткани, а также фотовыгорание (фотобличинг) фотосенсибилизатора приводят к тому, что нижние слои опухоли могут оказаться неразрушенными. При этом вероятность разрушения всей опухоли, включая ее нижние слои, не может быть увеличена путем увеличения дозы вводимого препарата из-за того, что сильно сенсибилизированные приповерхностные слои будут за счет своего высокого поглощения экранировать нижние. Повысить фотодинамическое воздействие на нижние слои за счет повышения плотности мощности облучения не всегда возможно из-за аппаратурных ограничений и, самое главное, из-за опасности нагреть опухоль и прилегающие к ней ткани.

В настоящем изобретении решается задача повышения эффективности ФДТ опухолей больших размеров за счет более полного разрушения всех их слоев, особенно при большой толщине опухолей.

Задача решается тем, что в способе фотодинамической терапии опухолей, в котором пациенту вводят препарат-фотосенсибилизатор, а затем облучают патологический участок световым излучением с длиной волны, равной длине волны спектрального максимума поглощения фотосенсибилизатора, дополнительно патологический участок облучают световым излучением с длиной волны, отличающейся от длины волны спектрального максимума поглощения на 7-15 нм.

Задача решается также тем, что при дополнительном облучении используют дозу облучения не ниже, чем при облучении световым излучением с длиной волны, близкой к длине волны спектрального максимума поглощения фотосенсибилизатора.

Задача решается также тем, что дополнительное облучение осуществляют непосредственно перед облучением излучением с длиной волны, близкой к длине волны спектрального максимума поглощения фотосенсибилизатора.

Задача решается также тем, что дополнительное облучение осуществляют одновременно с облучением излучением с длиной волны, близкой к длине волны спектрального максимума поглощения фотосенсибилизатора.

Предлагаемый способ реализуют следующим образом.

В организм внутривенно вводят фотосенсибилизатор. Через определенное время, выбранное исходя из фармакокинетики фотосенсибилизатора (исходя из условия максимального накопления фотосенсибилизатора в опухоли и его селективности по отношению к нормальной ткани) начинают терапевтическое облучение. Сначала осуществляют облучение излучением с длиной волны, превышающей длину волны спектрального максимума поглощения фотосенсибилизатора на 7-15 нм, коэффициент поглощения которого примерно вдвое ниже, чем в спектральном максимуме полосы поглощения, что обеспечивает большую долю энергии, которая поглощается глубокими слоями опухоли. После облучения на этой длине волны в течение определенного времени, достаточного для фотодинамического повреждения глубоких слоев опухоли, осуществляют облучение на длине волны спектрального максимума поглощения фотосенсибилизатора, которое поглощается преимущественно в приповерхностной области. Таким образом, энергия суммарного поглощения и фотодинамическое воздействие оказываются достаточно равномерно распределенными по глубине патологического очага, что повышает эффективность ФДТ.

Пример 1. Проведены исследования на 3 группах мышей Ф1 с опухолью Эрлиха толщиной около 0,9 см, расположенной под слоем кожи 0,1 см, с введенным фотосенсибилизатором Фотосенс в дозе 2 мг/кг. Первая группа - контрольная. При облучении мышей второй группы на длине волны 675 нм, близкой к максимуму спектрального поглощения, с плотностью световой мощности 100 мВт/см2 в течение 20 мин достигнуто значение коэффициента торможения роста опухоли 65%. В третьей группе предварительно проведено облучение на длине волны 687 нм с плотностью световой мощности 100 мВт/см2 в течение 10 мин, а затем на длине волны максимума спектрального поглощения 678 нм с плотностью световой мощности 100 мВт/см достигается коэффициент торможения роста опухоли 76%.

Пример 2. Проведены исследования на 3 группах мышей BDF1 с опухолью Са755 толщиной около 1,0 см, расположенной под слоем кожи 0,1 см, с введенным фотосенсибилизатором Фотосенс в дозе 2 мг/кг. Первая группа - контрольная. При облучении мышей второй группы на длине волны 675 нм, близкой к максимуму спектрального поглощения, с плотностью световой мощности 250 мВт/см в течение 20 мин достигнуто значение коэффициента торможения роста опухоли 61%. В третьей группе проведено облучение на длине волны 687 нм с плотностью световой мощности 150 мВт/см2 одновременно с облучением на длине волны 675 нм, близкой к максимуму спектрального поглощения, с плотностью световой мощности 100 мВт/см в течение 10 мин. Достигнуто значение коэффициента торможения роста опухоли 71%.

Пример 3. Проведены исследования на 3 группах мышей Ф1 с опухолью Эрлиха толщиной около 0,9 мм, расположенной под слоем кожи 0,1 см, с введенным фотосенсибилизатором Фотосенс в дозе 2 мг/кг. Первая группа - контрольная. При облучении мышей второй группы на длине волны 675 нм, равной длине волны максимума спектрального поглощения, с плотностью световой мощности 100 мВт/см в течение 20 мин достигнуто значение коэффициента торможения роста опухоли 65%. В третьей группе предварительно проведено облучение на длине волны 667 нм с плотностью световой мощности 100 мВт/см2 в течение 10 мин, а затем на длине волны 675 нм, равной длине волны максимума спектрального поглощения, с плотностью световой мощности 100 мВт/см в течение 10 мин. Достигнуто значение коэффициента торможения роста опухоли 75%.

1.Способфотодинамическойтерапииопухолей,прикоторомпациентувводятфотосенсибилизатор,азатемоблучаютпатологическийучастоксветовымизлучениемсдлинойволны,равнойдлиневолныспектральногомаксимумапоглощенияфотосенсибилизатора,отличающийсятем,чтопатологическийучастокдополнительнооблучаютсветовымизлучениемсдлинойволны,отличающейсяотдлиныволныспектральногомаксимумапоглощенияна7-15нм.12.Способпоп.1,отличающийсятем,чтопридополнительномоблучениииспользуютдозуоблучениянениже,чемприоблучениисветовымизлучениемсдлинойволны,равнойдлиневолныспектральногомаксимумапоглощенияфотосенсибилизатора.23.Способпоп.2,отличающийсятем,чтодополнительноеоблучениеосуществляютнепосредственнопередоблучениемизлучениемсдлинойволны,равнойдлиневолныспектральногомаксимумапоглощенияфотосенсибилизатора.34.Способпоп.2,отличающийсятем,чтодополнительноеоблучениеосуществляютодновременнособлучениемизлучениемсдлинойволны,равнойдлиневолныспектральногомаксимумапоглощенияфотосенсибилизатора.4
Источник поступления информации: Роспатент

Showing 11-15 of 15 items.
09.05.2019
№219.017.4c2e

Клеточная линия меланомы человека mel bgf, используемая для получения противоопухолевых вакцин

Изобретение относится к области биотехнологии, в частности к получению клеточных линий, используемых для создания противоопухолевых вакцин. Клеточная линия меланомы человека mel Bgf обладает стабильными культуральными и морфологическими характеристиками, хранится в Специализированной коллекции...
Тип: Изобретение
Номер охранного документа: 0002390557
Дата охранного документа: 27.05.2010
09.05.2019
№219.017.4c40

Клеточная линия меланомы человека mel ksen, используемая для получения противоопухолевых вакцин

Изобретение относится к области медицинской биотехнологии, конкретно к получению клеточных линий, используемых для создания противоопухолевых вакцин. Предложена новая клеточная линия меланомы человека mel Ksen для получения противоопухолевых вакцин. Заявленная клеточная линия обладает...
Тип: Изобретение
Номер охранного документа: 0002392316
Дата охранного документа: 20.06.2010
09.05.2019
№219.017.4cad

Способ определения индивидуальной чувствительности к химиотерапии солидных опухолей человека

Изобретение относится к области медицины и касается определения индивидуальной чувствительности к химиотерапии солидных опухолей человека. Сущность способа заключается в том, что в суспензию опухолевых клеток пациента добавляют ингибиторы активности АВС-транспортеров-верапамил и генистеин в...
Тип: Изобретение
Номер охранного документа: 0002315997
Дата охранного документа: 27.01.2008
18.05.2019
№219.017.541e

Способ криоконсервирования пуповинной крови

Изобретение относится к области криобиологии, а именно к способам криоконсервации пуповинной крови, и может быть использовано при ауто- и аллотрансплантации в онкологии и гематологии. Сущность способа заключается в том, что к свежесобранной пуповинной крови добавляют равный объем полиглюкина,...
Тип: Изобретение
Номер охранного документа: 0002263448
Дата охранного документа: 10.11.2005
06.07.2019
№219.017.a7e4

Средство, обладающее противоопухолевым действием, и способ его получения

Изобретение относится к области медицины и фармацевтики и касается средства, обладающего противоопухолевым действием, содержащего в качестве активного вещества 7-(диэтиламидо)-этилтионфосфат 2,3-дигидрокверцетина, и способа его получения путем взаимодействия дигидрокверцетина с...
Тип: Изобретение
Номер охранного документа: 0002349317
Дата охранного документа: 20.03.2009
Showing 41-42 of 42 items.
22.10.2019
№219.017.d8c3

Средство для лечения гормонозависимых опухолей и способ его получения

Группа изобретений относится к медицине и касается средства для лечения аденокарциномы молочной железы, включающего метиловый эфир N-трет-бутилоксикарбонил-S-тетрагидропиранилцистеинил-фенилаланил-D-триптофил-N-бензил-оксикарбониллизилтреонина (П), где средство представляет собой лиофилизат для...
Тип: Изобретение
Номер охранного документа: 0002703533
Дата охранного документа: 21.10.2019
18.07.2020
№220.018.33b8

Средство для терапии опухолей

Изобретение относится к фармацевтической промышленности и медицине, а именно к средству для терапии опухолей, активному в отношении опухолей мышей: лимфолейкоза Р-388, опухоли Эрлиха, эпидермоидной карциномы легкого Льюиса, меланомы В-16, рака шейки матки РШМ-5, рака толстого кишечника АКАТОЛ и...
Тип: Изобретение
Номер охранного документа: 0002726801
Дата охранного документа: 15.07.2020
+ добавить свой РИД