×
29.04.2019
219.017.421f

Результат интеллектуальной деятельности: ИСТОЧНИК БЫСТРЫХ НЕЙТРАЛЬНЫХ АТОМОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к вакуумно-плазменной технике. Источник быстрых нейтральных атомов содержит рабочую вакуумную камеру, эмиссионную сетку, ограниченный эмиссионной сеткой и соединенный с ней электрически холодный полый катод, боковая поверхность которого перпендикулярна эмиссионной сетке, анод, источник питания разряда, положительным полюсом соединенный с анодом, а отрицательным полюсом соединенный с полым катодом, и источник напряжения смещения, положительным полюсом соединенный с рабочей вакуумной камерой, а отрицательным полюсом соединенный с полым катодом. Источник дополнительно содержит соленоид, установленный с возможностью обхвата полого катода с возможностью формирования магнитного поля внутри полого катода вблизи его боковой поверхности перпендикулярно эмиссионной сетке, при этом поперечный размер эмиссионной сетки превышает ширину боковой поверхности полого катода более чем в 2 раза. При работе такого источника неоднородность распределения тока пучка не превышает ±10%, а отношение тока пучка к разрядному току повышается до 20-30%. 2 ил.

Изобретение относится к вакуумно-плазменной технике, а именно к источникам быстрых нейтральных атомов, преимущественно к источникам пучков быстрых нейтральных атомов, для очистки и нагрева подложек в рабочей вакуумной камере перед осаждением на них покрытий с целью повышения адгезии, а также для сопровождения осаждения покрытий бомбардировкой их поверхности быстрыми атомами с целью улучшения качества покрытий.

Известны источники типа Кауфмана, в которых плазменный эмиттер ионов получают с помощью разряда с накаленным катодом в магнитном поле. Самый большой источник этого типа формирует пучок круглого сечения диаметром 50 см [Hayes A.V., Kanarov V., Vidinsky В. Fifty centimeter ion beam source. - Rev. Sci. Instrum. 1996. V.67. No4. P.1638-1641]. В нем плазменный эмиттер ионов аргона площадью около 0,2 м получают с помощью разряда в магнитном поле между цилиндрическим анодом и четырьмя блоками накаленных катодов из толстой вольфрамовой проволоки при давлении аргона 0,02-0,04 Па. Ионно-оптическая система (ИОС) этого источника состоит из двух сеток. При ускоряющем напряжении между ними 300 В ток пучка составляет 0,5÷1 А, при 500 В его величину можно изменять от 1 А до 2,2 А, а при энергии ионов 800÷900 эВ ток достигает 5 А, что соответствует максимальной плотности тока 25 А/м2. С уменьшением энергии ниже 250 эВ плотность тока не превышает 1 А/м2. Поэтому использовать источники Кауфмана для сопровождения осаждения покрытий ионами с энергией 50÷200 эВ при плотности ионного тока свыше 10 А/м2 не представляется возможным, и это является их основным недостатком. Существенными недостатками являются также использование накаленных катодов, что не позволяет получать пучки ионов химически активных газов, например кислорода, и сложность изготовления формоустойчивой при высоких температурах многоапертурной ИОС.

Известны источники пучков быстрых нейтральных молекул с поперечным сечением до 0,5÷1 м2, в которых плазменный эмиттер ионов получают при давлении газа около 0,1 Па с помощью тлеющего разряда с электростатическим удержанием электронов в ловушке, включающей холодный полый катод и отрицательную по отношению к нему эмиссионную сетку [US Patent No 6285025, Int. Cl. H01S 1/00; H01S 3/00. Source of fast neutral molecules /A.S.Metel, S.N.Grigoriev/ PCT Filed Mar. 18, 1997 // Dated Sep.4, 2001]. Ионы ускоряются в промежутке между разделенными эмиссионной сеткой плазменным эмиттером, потенциал которого равен потенциалу расположенного внутри ловушки анода тлеющего разряда, и вторичной плазмой снаружи ловушки, потенциал которой практически равен потенциалу рабочей вакуумной камеры. Зависящая от геометрической прозрачности сетки доля ускоренных ионов (20÷25%) поглощается сеткой, а остальные поступают через отверстия сетки в рабочую камеру и на расстоянии около 0,1 м от сетки перезаряжаются, превращаясь при столкновениях с молекулами газа в быстрые нейтральные молекулы. Число быстрых нейтральных молекул, бомбардирующих поверхность подложки, расположенной на расстоянии 0,2 м от эмиссионной сетки, на порядок превышает число еще не перезарядившихся ионов. Отсутствие накаленных катодов позволяет получать пучки быстрых молекул химически активных газов, а ускорение ионов с использованием одной единственной сетки упрощает изготовление ИОС, снижает требования к формоустойчивости сетки при высоких температурах, уменьшает себестоимость источника и позволяет изготавливать источники с эмиссионной поверхностью любой площади и любой геометрической формы: цилиндрической, сферической, вогнутой, выпуклой и др. При уменьшении ускоряющего напряжения между анодом и рабочей камерой до величины, при которой потенциал полого катода становится ниже потенциала эмиссионной сетки, последняя поглощает эмитированные катодом электроны, и разряд погасает. Невозможность получать пучок с энергией, существенно меньшей величины, соответствующей катодному падению потенциала 400-600 В, а также неоднородность распределения плотности тока пучка по его сечению являются основными недостатками этих источников.

Наиболее близким решением по технической сущности к изобретению является источник быстрых нейтральных молекул, в котором круглая эмиссионная сетка диаметром 12 см с 1224 отверстиями диаметром по 2 мм, равномерно распределенными внутри круга диаметром 0,1 м, и цилиндрический полый катод диаметром 0,12 м, длиной 0,08 м соединены между собой, анод расположен снаружи полого катода и выполнен в виде полого цилиндра, из которого рабочий газ поступает в полый катод через малое отверстие в стенке полого катода [Метель А.С., Мельник Ю.А. Особенности генерации плазмы в источнике быстрых молекул с полым анодом снаружи его электростатической ловушки. - Инженерная физика. 2005. Вып.2. С.26-29. Рис.1]. Перепад давления от 1 Па в полом аноде до 0,1 Па в полом катоде обеспечивает самостоятельность разряда с двойным электростатическим слоем между плазменным эмиттером внутри полого катода и проникающей в него из полого анода анодной плазмой. При равенстве потенциалов перекрытого сеткой полого катода и рабочей камеры во вторичную плазму внутри камеры из плазменного эмиттера внутри полого катода через отверстия сетки поступают ускоренные ионы, энергия которых соответствует катодному падению потенциала 400-600 В. На расстоянии от сетки 0,2 м и более они практически полностью перезаряжаются, превращаясь при столкновениях с молекулами газа в быстрые нейтральные молекулы. Кинетическая энергия бомбардирующих подложку нейтральных молекул равна энергии ускоренных ионов, однако теперь она уже не зависит от потенциала поверхности подложки. При подаче на полый катод напряжения смещения отрицательной полярности от включенного между ним и камерой источника постоянного напряжения между вторичной плазмой в камере и сеткой появляется слой положительного объемного заряда с падением потенциала на нем, равным напряжению смещения. Прошедшие через сетку ионы замедляются в этом слое, и их энергия уменьшается на соответствующую напряжению смещения величину. Когда напряжение смещения становится равным катодному падению потенциала разряда, энергия ионов снижается до нуля. При токе в цепи анода 2 А ток пучка составляет 0,15 А, что соответствует средней плотности тока ускоренных частиц, примерно равной 20 А/м2. Энергию ускоренных частиц можно изменять при постоянной плотности тока непрерывно от нуля до 400÷600 эВ. При максимальной энергии нейтральных молекул 400÷600 эВ можно очищать и активировать поверхность подложки из любого материала, в том числе из диэлектрика, перед осаждением на нее покрытия, а при энергии 50÷200 эВ можно сопровождать осаждение покрытия. Недостатками источника являются сравнительно низкое (менее 10%) отношение тока пучка к разрядному току в цепи анода, определяемое соотношением суммарной площади эмиссионных отверстий сетки и общей площади поверхности ловушки, включающей внутренние поверхности полого катода и сетки, а также неоднородность распределения плотности тока по сечению пучка. Плотность тока максимальна на оси пучка и снижается в 2 раза на расстоянии от оси, примерно равном 0,035 м, что в 1,5 раза меньше радиуса эмиссионной поверхности сетки. Указанная неоднородность обусловлена тем, что быстрые электроны, многократно отражаясь от стенок полого катода и сетки, проходят внутри ловушки путь, длина которого превышает размеры полого катода на 2 порядка. При этом они чаще всего пролетают через центр катодной полости, поэтому частота ионизации газа максимальна именно в ее центре. Образованные здесь ионы в первую очередь достигают центральной области эмиссионной сетки, поэтому плотность тока ионной эмиссии имеет в центре сетки максимум. Отношение тока пучка к разрядному току увеличивается с ростом отношения диаметра эмиссионной сетки к длине полого катода. Однако при этом одновременно возрастает неоднородность распределения плотности тока пучка. Неоднородность плотности тока пучка еще более выражена в источниках пучков прямоугольного сечения. В них плотность тока ионной эмиссии минимальна вблизи углов прямоугольной эмиссионной сетки, и из-за этого отпечаток пучка на бомбардируемой им поверхности фактически имеет форму эллипса.

Технической задачей предложенного решения является создание источника быстрых нейтральных атомов с энергией, регулируемой от нуля до сотен электронвольт, в котором при повышении отношения тока пучка к разрядному току обеспечивалось бы более однородное распределение тока пучка по его сечению.

Поставленная задача решается тем, что источник быстрых нейтральных атомов, содержащий рабочую вакуумную камеру, эмиссионную сетку, ограниченный эмиссионной сеткой и соединенный с ней электрически холодный полый катод, боковая поверхность которого перпендикулярна эмиссионной сетке, анод, источник питания разряда, положительным полюсом соединенный с анодом, а отрицательным полюсом соединенный с полым катодом, и источник напряжения смещения, положительным полюсом соединенный с рабочей вакуумной камерой, а отрицательным полюсом соединенный с полым катодом, дополнительно содержит соленоид, установленный с возможностью обхвата полого катода с возможностью формирования магнитного поля внутри полого катода вблизи его боковой поверхности перпендикулярно эмиссионной сетке, при этом поперечный размер эмиссионной сетки превышает ширину боковой поверхности полого катода более чем в 2 раза.

Изобретение поясняется чертежами, где:

на Фиг.1 изображена схема источника быстрых нейтральных атомов.

на Фиг.2 изображено сечение А-А по Фиг.1.

Источник быстрых нейтральных атомов содержит эмиссионную сетку 1, выполненную, например, прямоугольной формы. Перекрытый эмиссионной сеткой 1 холодный полый катод 2, выполненный, например, в форме прямоугольного параллелепипеда, боковая поверхность 3 которого расположена перпендикулярно эмиссионной сетке 1. Анод 4 выполнен, например, в форме полого цилиндра и расположен с внешней стороны полого катода 2 с возможностью поступления газовой среды, подаваемой в него, во внутренний объем полого катода 2 через отверстие 5, выполненное в стенке последнего. Источник 6 питания разряда положительным полюсом соединен с анодом 4, а отрицательным полюсом соединен с полым катодом 2. Источник 7 напряжения смещения положительным полюсом соединен с рабочей вакуумной камерой 8, а отрицательным полюсом соединен с полым катодом 2. Источник быстрых нейтральных атомов также содержит соленоид 9, расположенный с возможностью охвата полого катода 2 и обеспечивающий формирование магнитного поля внутри полого катода 2 вблизи его боковой поверхности 3 перпендикулярно эмиссионной сетке 1. Для решения поставленной задачи необходимо, чтобы поперечные размеры эмиссионной сетки 1 не менее чем в 2 раза превышали ширину боковой поверхности 3 полого катода 2 и соленоида 9.

Кроме того, на фиг.2 условно показана штриховой линией 10 граница эмиссионной поверхности сетки 1, а стрелкой 11 на фиг.1 условно показана подача рабочего газа в полость анода 4, из которой газ через отверстие 5 малого диаметра поступает в полый катод 2, а далее через отверстия эмиссионной сетки 2 поступает в рабочую вакуумную камеру и затем в систему вакуумной откачки.

Устройство работает следующим образом.

Рабочую вакуумную камеру 8 с обрабатываемыми подложками внутри нее (не показаны) откачивают до давления 1 мПа, затем подают в камеру 8, например, через полый анод 4, отверстие 5 и полый катод 2, рабочий газ, например, аргон, и увеличивают его давление в камере 8 до 0,1 Па. Включением источника 6 прикладывают между анодом 4 и полым катодом 2 напряжение Up в несколько сотен вольт. С помощью поджигающего устройства (не показано) зажигают газовый разряд. В результате полый катод 2 заполняется плазменным эмиттером 12, отделенным от поверхностей полого катода 2 и эмиссионной сетки 1 слоем положительного объемного заряда 13 ионов 14, полый анод 4 заполняется анодной плазмой 15, проникающей через отверстие 5 внутрь полого катода 2, а камера 8 в результате нейтрализации вторичными электронами со стенок камеры 8 положительного объемного заряда поступающих в нее через отверстия сетки 1 ионов 14, ускоренных в слое 13, заполняется вторичной плазмой 16. Потенциал вторичной плазмы 2 превышает потенциал камеры 8 примерно на 1÷5 В, а потенциал анодной плазмы 15 примерно равен потенциалу анода 4. Между проникающей в полый катод 2 анодной плазмой 15 и плазменным эмиттером 12 образуется стационарный двойной электростатический слой 17 с падением потенциала на нем 10÷20 В. При катодном падении потенциала 400÷600 В падением на двойном слое 17 и потенциалом вторичной плазмы 16 можно пренебречь, приближенно полагая, что во вторичной плазме 16 энергия ускоренных в слое 13 ионов 14 соответствует напряжению Up источника 6 между анодом 4 и полым катодом 2, т.е. равна qUp, где q - заряд иона.

Включением источника 7 на полый катод 2 подают напряжение смещения Uc отрицательной относительно камеры 8 полярности. В результате между эмиссионной сеткой 1 и вторичной плазмой 16 образуется слой положительного объемного заряда 18 с падением потенциала, примерно равным напряжению Uc источника 7. Ускоренный в слое 13 ион 14 проходит через сетку 1 и тут же замедляется в слое 18. Поэтому энергия ионов во вторичной плазме соответствует разности потенциалов (Up-Uc) между плазменным эмиттером 12 и вторичной плазмой 16. При постоянном токе пучка ее можно регулировать от нуля до qUp изменением напряжения Uc. Во вторичной плазме 16 на расстоянии 0,2 м от сетки 1 практически все ионы аргона 14 превращаются в быстрые нейтральные атомы аргона, кинетическая энергия и направление движения которых не зависят от электрических и магнитных полей.

Включением источника питания соленоида 9 (не показан) создают магнитное поле, вектор индукции которого вблизи боковой поверхности 3 полого катода 2 перпендикулярен эмиссионной сетке 1. Электроны 19, эмитированные в результате бомбардировки боковой поверхности 3 ионами 20 из плазменного эмиттера 12, ускоряются в слое 13 до энергии eUp, где е - заряд электрона, а разрядное напряжение Up равно разности потенциалов между плазменным эмиттером 12 и поверхностью 3. В плазменном эмиттере 12 ускоренный электрон 19 движется вблизи боковой поверхности 3 полого катода 2 в плоскости, перпендикулярной вектору магнитной индукции В, а следовательно, в плоскости, параллельной эмиссионной сетке 1, по окружности, радиус которой RL (м)=3,4×[Up(B)]1/2/B (Тл). Например, при Up=400 В и В=4 мТл радиус траектории электрона RL (м)=0,017 м. Описав половину окружности 21, электрон 19 отражается электрическим полем слоя 13, снова проходит через плазменный эмиттер 12 по окружности радиуса RL, снова отражается в слое 13 и т.д. Таким образом, эмитированные боковой поверхностью 3 полого катода 2 быстрые электроны 19, осциллируя между боковой поверхностью 3 и отстоящей от нее на расстояние RL огибающей траекторий 21 электронов 19, много раз обходят эту поверхность 3 по часовой стрелке или против часовой стрелки (в зависимости от направления магнитного поля от эмиссионной сетки 1 или к ней). Поэтому эти электроны 19 образуют ионы только вблизи боковой поверхности 3 полого катода 2, причем интенсивность ионизации сохраняет постоянное значение вблизи всей боковой поверхности 3 полого катода 2, в том числе и в углах прямоугольного полого катода. Так как магнитное поле с индукцией до 10 мТл практически не влияет на движение ионов, они свободно покидают указанную область пространства вблизи боковой поверхности 3 полого катода 2 в направлении к его центру и попадают, в том числе, на границу слоя 13 между плазменным эмиттером 12 и эмиссионной сеткой 1. На движение электронов, эмитированных сеткой 1 и противоположной ей стенкой полого катода 2, перпендикулярное им магнитное поле не оказывает заметного влияния. При удалении от боковой поверхности 3 на расстояние, превышающее ее ширину и ширину соленоида 9, магнитное поле становится резко неоднородным, его индукция снижается на порядок и ближе к центру полого катода 2 оно вообще не влияет на движение электронов.

Установка соленоида 9 с возможностью обхвата полого катода 2 с возможностью формирования магнитного поля внутри полого катода 2 вблизи его боковой поверхности 3 перпендикулярно эмиссионной сетке 1 позволяет значительно увеличить интенсивность ионизации газа вблизи боковой поверхности 3 полого катода 2 и обеспечить однородность ее распределения на всей боковой поверхности 3 полого катода 2.

При поперечных размерах эмиссионной сетки 1, превышающих ширину боковой поверхности 3 полого катода 2 не менее чем в 2 раза, отношение тока пучка к разрядному току составляет 20÷30%, а в центре полого катода 2 имеется область пространства, в котором магнитное поле соленоида 9 не влияет на движение быстрых электронов. В этой области эмитированные сеткой 1 и противоположной ей стенкой полого катода 2 электроны двигаются примерно так же, как и в отсутствие соленоида 9, образуя максимальное число ионов в центре катода 2. Плотность тока эмиссии образованных ими ионов максимальна в центре сетки 1 и минимальна на границе ее эмиссионной поверхности 10. Плотность тока эмиссии ионов, образованных вблизи боковой поверхности 3 полого катода 2 эмитированными этой поверхностью электронами 19, растет с увеличением индукции магнитного поля. Она минимальна в центре эмиссионной сетки 1 и максимальна на границе ее эмиссионной поверхности 10. Суперпозиция ионных потоков из центра полого катода 2 и из области вблизи его боковой поверхности 3 дает более однородное распределение тока ионной эмиссии по поверхности сетки 1, а следовательно, и более однородное распределение тока пучка по его сечению. Степень однородности можно регулировать, изменяя ток в обмотке соленоида 9 и, соответственно, индукцию магнитного поля.

По сравнению с прототипом предлагаемый источник быстрых нейтральных атомов отличается более высокой однородностью распределения тока пучка по его сечению (±10%) при более высоком отношении тока пучка к разрядному току (до 20÷30%).

Источник быстрых нейтральных атомов, содержащий рабочую вакуумную камеру, эмиссионную сетку, ограниченный эмиссионной сеткой и соединенный с ней электрически холодный полый катод, боковая поверхность которого перпендикулярна эмиссионной сетке, анод, источник питания разряда, положительным полюсом соединенный с анодом, а отрицательным полюсом соединенный с полым катодом, и источник напряжения смещения, положительным полюсом соединенный с рабочей вакуумной камерой, а отрицательным полюсом соединенный с полым катодом, отличающийся тем, что он дополнительно содержит соленоид, установленный с возможностью обхвата полого катода с возможностью формирования магнитного поля внутри полого катода вблизи его боковой поверхности перпендикулярно эмиссионной сетке, при этом поперечный размер эмиссионной сетки превышает ширину боковой поверхности полого катода более чем в 2 раза.
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
08.03.2019
№219.016.d53d

Способ получения мелющих тел

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении мелющих тел, применяемых в качестве инструмента для измельчения различных материалов в барабанных мельницах. Осуществляют формообразование мелющих тел в три перехода. При этом производят...
Тип: Изобретение
Номер охранного документа: 0002422235
Дата охранного документа: 27.06.2011
10.04.2019
№219.017.0802

Вертикальный штамповочный молот с гидравлическим приводом

Изобретение относится к обработке металлов давлением, в частности к кузнечно-штамповочному оборудованию для изготовления заготовок с удлиненной осью. Молот содержит станину со стойками, оснащенными направляющими, в которых размещена баба молота. На стойках установлена плита с гидроцилиндром....
Тип: Изобретение
Номер охранного документа: 0002409446
Дата охранного документа: 20.01.2011
19.04.2019
№219.017.3131

Способ получения длинномерных стержневых изделий с кольцевым выступом

Изобретение относится к обработке металлов давлением и может быть использовано при получении кольцевых выступов на стержневых заготовках горячей высадкой. Заготовку предварительно нагревают до температуры, составляющей 0,5-0,7 температуры высадки. Затем производят нагрев зоны формирования...
Тип: Изобретение
Номер охранного документа: 0002421294
Дата охранного документа: 20.06.2011
29.04.2019
№219.017.40b7

Головка полой насосной штанги

Изобретение относится к области обработки металлов давлением и может быть использовано в нефтедобывающей промышленности для эксплуатации на продуктивных нефтеносных пластах. Головка полой насосной штанги содержит наружный бурт 1 заданной геометрической формы и сопряженное с ним «место под ключ»...
Тип: Изобретение
Номер охранного документа: 0002391558
Дата охранного документа: 10.06.2010
29.04.2019
№219.017.4180

Способ изготовления полой насосной штанги для газонефтяных скважин

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления полых насосных штанг для газонефтяных скважин. Получают тело штанги и головку в виде цельнометаллической конструкции штамповкой в два этапа. Головка имеет наружный бурт и «место под ключ». На первом...
Тип: Изобретение
Номер охранного документа: 0002384384
Дата охранного документа: 20.03.2010
29.04.2019
№219.017.4390

Двухкомпонентный динамометр для измерения составляющих силы резания

Изобретение относится к области машиностроения, преимущественно для фрезерования концевыми фрезами, и предназначено для измерения составляющих силы резания. Технический результат изобретения заключается в повышении точности, удобстве эксплуатации и наглядности испытаний. Двухкомпонентный...
Тип: Изобретение
Номер охранного документа: 0002411471
Дата охранного документа: 10.02.2011
Showing 31-40 of 75 items.
10.02.2016
№216.014.c2a6

Способ получения покрытия из нитрида титана на твердосплавных пластинах в тлеющем разряде с эффектом полого катода.

Изобретение относится к области обработки поверхности инструментальных материалов и может быть использовано для создания покрытия в виде пленки нитрида титана на твердосплавных подложках, таких как режущие пластины, предназначенных для обработки труднообрабатываемых материалов. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002574157
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.02e0

Способ обработки твердосплавных пластин режущего инструмента

Изобретение относится к области металлургии, а именно к электроимпульсной обработке твердосплавных пластин режущего инструмента, и может быть использовано в металлообрабатывающей, машиностроительной и инструментальной отраслях промышленности. В способе обработки твердосплавных пластин режущего...
Тип: Изобретение
Номер охранного документа: 0002587198
Дата охранного документа: 20.06.2016
27.04.2016
№216.015.3862

Способ изготовления медно-титанового токопроводящего элемента

Изобретение относится к технологии изготовления медно-титановых токопроводящих контактных элементов. Медный и титановый компоненты сопрягают друг с другом и соединяют в медно-титановый токопроводящий контактный элемент. Соединение упомянутых компонентов осуществляют искровым плазменным...
Тип: Изобретение
Номер охранного документа: 0002582867
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3962

Способ спекания изделий из порошков твердых сплавов группы wc-co

Изобретение относится к области порошковой металлургии. Способ спекания изделий из порошков твердых сплавов группы WC-Co включает электроимпульсное прессование при давлении 50-500 МПа, плотности импульса тока 50-500 кА/см и длительности импульса тока не более 10 с. Причем электроимпульсное...
Тип: Изобретение
Номер охранного документа: 0002582851
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3bd3

Устройство для синтеза наноструктурных покрытий

Изобретение относится к устройствам для синтеза износостойких нанокомпозитных покрытий на изделиях в вакуумной камере. Устройство для синтеза покрытий, содержащее рабочую вакуумную камеру, соединенный с камерой анод, полый катод, эмиссионную сетку, перекрывающую полый катод, мишень,...
Тип: Изобретение
Номер охранного документа: 0002583378
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.731e

Способ управления электроэрозионной обработкой детали на автоматизированном вырезном станке с системой чпу

Изобретение относится к электрофизическим и электрохимическим методам обработки, в частности к электроэрозионной обработке на автоматизированных вырезных станках с ЧПУ. В способе при осуществлении электроэрозионной обработки детали поддерживают контролируемый параметр, базирующийся на...
Тип: Изобретение
Номер охранного документа: 0002598022
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.abb2

Способ изготовления композитных керамических изделий

Изобретение относится к области машиностроения и может быть использовано при изготовлении композитных керамических изделий типа опорных элементов (например, колец/валов подшипников качения/скольжения) или инструментов типа чашечных резцов или режущих керамических пластин. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002612179
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.bf61

Способ автоматической регулировки технических характеристик в свч-приборах и комплекс средств для его осуществления

Изобретение относится к области радиоизмерительной СВЧ-техники и предназначено для автоматической регулировки коэффициента стоячей волны по напряжению (КСВ)и неравномерности по амплитудно-частотной характеристике (АЧХ) и фазочастотной характеристике (ФЧХ) в СВЧ-приборах. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002617150
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.ccc8

Устройство для синтеза и осаждения покрытий

Изобретение относится к области машиностроения, в частности к устройствам для синтеза и осаждения износостойких покрытий на изделиях в вакуумной камере. Устройство содержит вакуумную камеру, планарный магнетрон с плоской мишенью и источник питания разряда, соединенный положительным полюсом с...
Тип: Изобретение
Номер охранного документа: 0002620845
Дата охранного документа: 30.05.2017
29.12.2017
№217.015.f8af

Способ управления трением в парах трения

Изобретение относится к управлению трением в парах трения и может найти широкое применение в различных отраслях, таких как станкостроение, транспортное машиностроение, приборостроение и других. Способ регулирования трения в элементах пары трения включает предварительное нанесение на элементы...
Тип: Изобретение
Номер охранного документа: 0002639745
Дата охранного документа: 22.12.2017
+ добавить свой РИД