×
29.04.2019
219.017.3fa1

Результат интеллектуальной деятельности: ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА ЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

Аннотация: Изобретение применяется в ядерной технике для тепловыделяющих сборок, в частности в конструкции элементов жесткого каркаса. Тепловыделяющая сборка содержит головную и хвостовую части, соединенные направляющими каналами, размещенными в ячейках дистанционирующих решеток. Направляющие каналы жестко соединены, по крайней мере, с торцевыми дистанционирующими решетками. Высота h дистанционирующих решеток и толщина δ стенок ячеек дистанционирующей решетки, выбраны таким образом, что их количественные характеристики удовлетворяют расчетно-экспериментально определенному условию. Техническим результатом изобретения является повышение жесткости сборки при поперечном и продольных изгибах, увеличение угловой жесткости в парах “направляющий канал - ячейка дистанционирующей решетки”, уменьшение собственного изгиба тепловыделяющей сборки в пролетах между дистанционирующими решетками и свободного изгиба тепловыделяющей сборки в неоднородных нейтронных и температурных полях за счет уменьшенной склонности сплава Э635 к радиационному росту. 8 з.п. ф-лы, 3 ил.

Область техники, к которой относится изобретение

Изобретение относится к ядерной технике и касается конструкции тепловыделяющих сборок водо-водяных ядерных энергетических реакторов, особенно типа ВВЭР-1000, в частности конструкции элементов жесткого каркаса.

Уровень техники

Известна тепловыделяющая сборка, содержащая пучок тепловыделяющих элементов, расположенных в ячейках дистанционирующих решеток (Крамеров А.Я. Вопросы конструирования ядерных реакторов, М., Атомиздат, 1971, с.198, рис.7.2.2.). Жесткость и прочность данной тепловыделяющей сборки обеспечивается наличием шестигранного чехла, соединяющего головную и хвостовую части сборки. Однако наличие чехла вносит паразитный захват нейтронов в активной зоне и увеличивает линейную тепловую нагрузку тепловыделяющих элементов за счет вынужденного увеличения шага между тепловыделяющими сборками.

Известна тепловыделяющая сборка ядерного реактора, содержащая гексагональный пучок тепловыделяющих элементов, размещенный в ячейках расположенных по длине сборки дистанционирующих решеток (Крамеров А.Я. Вопросы конструирования ядерных реакторов, М., Атомиздат, 1971, с.204, рис.7.1.11б). Головная и хвостовая части соединены направляющими каналами, в которых перемещаются стержни, включающие материал, поглощающий нейтроны. Чехол в данной тепловыделяющей сборке отсутствует, что позволяет уменьшить зазор между соседними тепловыделяющими сборками. В результате снижены неравномерность энерговыделения и линейные нагрузки тепловыделяющих элементов.

Отсутствие чехла снижает паразитный захват нейтронов и уменьшает расход материала. Но использование сборки на энергоблоках с реакторами ВВЭР-1000 показало, что после эксплуатации в течение трех лет имеет место искривление направляющих каналов, обусловленное механической нагрузкой со стороны головной части, которая поджата для предотвращения всплытия тепловыделяющей сборки под действием потока теплоносителя. Кроме того, в процессе эксплуатации реактора появляется термомеханическое нагружение конструкции сборки в целом за счет деформаций тепловыделяющих элементов, передаваемых через дистанционирующие решетки, которые также подвергаются деформированию. Основополагающую роль в развитии искривлений тепловыделяющих сборок играет релаксация упругих натягов в дистанционирующих решетках, созданных при размещении в решетках тепловыделяющих элементов и направляющих каналов.

Значительное уменьшение изгибной жесткости тепловыделяющей сборки принципиально меняет характер ее поведения в активной зоне при длительной эксплуатации: возникают изгибы тепловыделяющей сборки сложной пространственной формы с отклонениями осей сборки от исходного положения на величину, достигающую предельно разрешенную исходя из геометрических возможностей упаковки сборок в активной зоне с учетом конструктивных сборочных зазоров. При этом возможно появление больших зазоров между периферийными тепловыделяющими элементами соседних искривленных тепловыделяющих сборок, что нарушает теплотехническую надежность этих тепловыделяющих элементов вследствие всплеска в них энерговыделения. Следует также отметить, что для гексагональной конструкции тепловыделяющих сборок, в частности, применяемых на энергоблоках с реакторами ВВЭР-1000, наблюдается угловая анизотропия изгибной жесткости (изгибная жесткость в направлении от “угла к углу” не равна изгибной жесткости в направлении “от грани к грани”), при этом изгибная жесткость сборки в тангенциальном направлении (относительно центра активной зоны) меньше ее изгибной жесткости в радиальном направлении. Большая свобода перемещения в тангенциальном направлении вызывает преимущественно вихреобразную закрутку активных зон и, следовательно, максимальное искривление тепловыделяющих сборок в рабочих условиях. Имеются экспериментальные данные об искривлении тепловыделяющих сборок на величину порядка 20 мм. Столь значительные искривления тепловыделяющих сборок нарушают исходную геометрию активной зоны, приводят к изменениям энерговыделения и теплогидравлических характеристик активной зоны.

Для устранения обозначенных негативных факторов тепловыделяющей сборки и обеспечения ее стабильного поведения, выражающегося в исключении чрезмерного искривления сборки в рабочих условиях при эксплуатации в течение 4-5 лет, необходимо

- обеспечить гарантированное значение изгибной жесткости тепловыделяющих сборок при продольном изгибе путем введения продольных элементов, не проскальзывающих относительно дистанционирующих решеток в течение всего срока эксплуатации;

- обеспечить гарантированно более высокое значение изгибной жесткости тепловыделяющих сборок при поперечном изгибе путем уменьшения в рабочих условиях индивидуального изгиба стержней или других продольных элементов в пролетах между дистанционирующими решетками при одновременном повышении жесткости на поворот стержней или продольных элементов в ячейках дистанционирующих решеток.

Перечисленным условиям удовлетворяет наиболее близкая по технической сущности и достигаемому результату к описываемой тепловыделяющая сборка ядерного реактора, содержащая головную и хвостовую части, соединенные направляющими каналами, размещенными в ячейках дистанционирующих решеток, которые расположены на расстоянии друг от друга по длине сборки (RU 2093906, G 21 С 3/30, 20.10.97). В конструкцию известной тепловыделяющей сборки введены дополнительные элементы жесткости - продольные уголки, проходящие от нижней опорной решетки до верхней дистанционирующей решетки и приваренные снаружи по шести углам к каждой дистанционирующей решетке. Жесткое соединение уголков с дистанционирующими решетками обеспечивает резкое повышение жесткости тепловыделяющей сборки на продольный изгиб вне зависимости от релаксации упругих натягов в стержневой системе тепловыделяющей сборки. Пространственная форма уголков имеет весьма высокое значение собственных моментов инерции и обеспечивает тем самым достаточную жесткость конструкции при поперечном изгибе тепловыделяющей сборки. Кроме того, отсутствие возможности поворота уголков относительно оси дистанционирующих решеток в местах их взаимного скрепления дополнительно способствует повышению жесткости тепловыделяющей сборки.

В то же время известная тепловыделяющая сборка имеет следующие недостатки:

- повышение металлоемкости конструкции, что приводит к снижению нейтронно-физических характеристик активной зоны;

- ухудшение теплоотвода от угловых и периферийных тепловыделяющих элементов;

- усложнение технологии изготовления тепловыделяющей сборки за счет введения дополнительных угловых элементов, увеличение объема сварочных работ и контроля;

- уменьшение возможностей визуального контроля на этапах изготовления и при проведении осмотра в период эксплуатации.

Сущность изобретения

Задачей настоящего изобретения является разработка и создание тепловыделяющей сборки ядерного реактора, обладающей повышенной стабильностью при эксплуатации в топливных циклах повышенной продолжительности без накопления недопустимых изгибов при одновременном снижении металлоемкости.

В результате решения данной задачи возможно получение новых технических результатов, заключающихся в том, что повышается жесткость тепловыделяющей сборки при поперечном и продольных изгибах, увеличивается угловая жесткость в парах “направляющий канал - ячейка дистанционирующей решетки”, уменьшается собственный изгиб тепловыделяющей сборки в пролетах между дистанционирующими решетками и свободный изгиб тепловыделяющей сборки в неоднородных нейтронных и температурных полях за счет уменьшенной склонности сплава Э635 к радиационному росту.

Данные технические результаты достигаются тем, что в тепловыделяющей сборке ядерного реактора, содержащей головную и хвостовую части, соединенные направляющими каналами, размещенными в ячейках дистанционирующих решеток, которые расположены на расстоянии друг от друга по длине сборки, направляющие каналы жестко соединены, по крайней мере, с торцевыми дистанционирующими решетками, а высота h дистанционирующих решеток и толщина δ стенок ячеек дистанционирующей решетки выбраны таким образом, что их численные значения удовлетворяют условию

где

h - высота дистанционирующей решетки, мм;

δ - толщина элементов, образующих ячейки дистанционирующей решетки, мм, причем для 8-и решеток С0=39,17, А0=5,563, A1=-3,482, А2=1,332, В0=2,245, B1=-4,500, В2=6,072, В3=-3,128, В4=-0,620, для 9-и решеток С0=22,74, А0=4,988, А1=-2,985, А2=1,119, В0=2,225, В1=-4,005, В2=5,145, В3=-2,595, В4=-1,113, для 10-и решеток С0=13,06, А0=4,481, A1=-2,568, А2=0,932, В0=2,203, В1=-3,568, В2=4,324, В3=-2,127, В4=-1,510, для 11-и решеток С0=8,84, А0=4,138, А1=-2,281, А2=0,811, В0=2,170, B1=-3,250, В2=3,752, В3=-1,814, В4=-1,675, для 12-и решеток С0=6,90, А0=3,895, A1=-2,088, А2=0,732, В0=2,126, B1=-3,042, В2=3,400, В3=-1,623, В4=-1,695, для 13-и решеток С0=5,73, А0=3,697, А1=-1,937, А2=0,667, В0=2,068, B1=-2,910, В2=3,199, В3=-1,505, В4=-1,651, для 14-и решеток С0=4,70, А0=3,526, A1=-1,813, А2=0,614, В0=2,003, B1=-2,815, В2=3,062, В3=-1,422, В4=-1,575, для 15-и решеток С0=3,78, А0=3,356, A1=-1,684, А2=0,560, В0=1,940, В1=-2,722, В2=2,928, В3=-1,336, В4=-1,490.

Отличительной особенностью настоящего изобретения является жесткое соединение направляющих каналов, по крайней мере, с торцевыми, но предпочтительно - со всеми, дистанционирующими решетками, что исключает проскальзывание направляющих каналов относительно ячеек этих решеток. В этом случае общая изгибная жесткость тепловыделяющей сборки при облучении увеличивается, поскольку появляется постоянная составляющая изгибной жесткости сборки, равная жесткости связанного каркаса направляющих каналов. При этом тепловыделяющие элементы могут перестать играть роль связанной многостержневой системы и, при их проскальзывании в ячейках дистанционирующих решеток, они будут вносить вклад в общую изгибную жесткость кассеты не как связанный многостержневой пучок, а как множество независимых стержней, что много меньше по своей величине. Повысить жесткость тепловыделяющей сборки в целом и обеспечить стабильность тепловыделяющей сборки, при которой зазоры, образующиеся между сборками, не превышают величины, предельно возможной с точки зрения обеспечения допустимой энергонапряженности тепловыделяющих элементов и теплотехнической надежности активной зоны, можно лишь при выполнении условия

Кроме того, вышеприведенное расчетно-экспериментальное выражение увязывает количество дистанционирующих решеток с их характерными параметрами, при которых напряжения, возникающие в дистанционирующих решетках и обусловленные возникающими при изгибе осевыми силами в местах крепления направляющих каналов, не превышают допустимой величины.

Целесообразно также толщину стенок дистанционирующих решеток выбрать от 0,25 до 0,35 мм, а ее высоту от 20 до 50 мм и изготовить направляющие каналы из сплава Э635, а дистанционирующие решетки из сплава Э110 или предпочтительно - из сплава Э635.

Направляющие каналы могут быть жестко соединены, по крайней мере, с торцевыми дистанционирующими решетками непосредственно или посредством промежуточных втулок, размещенных в соответствующих ячейках дистанционирующих решеток. Соединение направляющих каналов с дистанционирующими решетками предпочтительно выполнить симметрично относительно продольной оси направляющего канала со стороны обоих торцов дистанционирующей решетки на расстоянии не более 0,15 h от торца дистанционирующей решетки.

Жесткое соединение направляющих каналов, по крайней мере, с торцевыми дистанционирующими решетками может быть выполнено в виде точечной сварки.

Наиболее рационально использовать 18 направляющих каналов, диаметр которых составляет от 12 до 14 мм.

Перечень чертежей

На фиг.1 приведен общий вид тепловыделяющей сборки, на фиг.2 показан вариант узла А на фиг.1 в разрезе, на фиг.3 показан второй вариант узла А на фиг.1 в разрезе.

Сведения, подтверждающие возможность осуществления изобретения

Тепловыделяющая сборка ядерного реактора содержит головную часть 1 и хвостовую часть 2, соединенные направляющими каналами 3. Направляющие каналы 3 размещены в ячейках 4 дистанционирующих решеток 5, которые расположены на расстоянии друг от друга по длине сборки. Направляющие каналы, как правило, в количестве 18 штук проходят через ячейки, симметрично расположенные вокруг центрального канала 6. В остальных ячейках дистанционирующих решеток 5 размещены тепловыделяющие элементы 7. Дистанционирующие решетки 5 совместно с направляющими каналами 3 образуют жесткий каркас тепловыделяющей сборки за счет того, что направляющие каналы 3 жестко соединены с торцевыми дистанционирующими решетками или, что предпочтительно, со всеми дистанционирующими решетками 5. Высоту h дистанционирующих решеток и толщину δ стенок ячеек дистанционирующей решетки выбирают таким образом, что их численные значения удовлетворяют условию

где

h - высота дистанционирующей решетки, мм;

δ - толщина элементов, образующих ячейки дистанционирующей решетки, мм, причем для 8-и решеток С0=39,17, А0=5,563, A1=-3,482, А2=1,332, В0=2,245, B1=-4,500, В2=6,072, В3=-3,128, В4=-0,620, для 9-и решеток С0=22,74, А0=4,988, А1=-2,985, А2=1,119, В0=2,225, В1=-4,005, В2=5,145, В3=-2,595, В4=-1,113, для 10-и решеток С0=13,06, А0=4,481, A1=-2,568, А2=0,932, В0=2,203, В1=-3,568, В2=4,324, В3=-2,127, В4=-1,510, для 11-и решеток С0=8,84, А0=4,138, А1=-2,281, А2=0,811, В0=2,170, B1=-3,250, В2=3,752, В3=-1,814, В4=-1,675, для 12-и решеток С0=6,90, А0=3,895, A1=-2,088, А2=0,732, В0=2,126, B1=-3,042, В2=3,400, В3=-1,623, В4=-1,695, для 13-и решеток С0=5,73, А0=3,697, А1=-1,937, А2=0,667, В0=2,068, B1=-2,910, В2=3,199, В3=-1,505, В4=-1,651, для 14-и решеток С0=4,70, А0=3,526, A1=-1,813, А2=0,614, В0=2,003, B1=-2,815, В2=3,062, В3=-1,422, В4=-1,575, для 15-и решеток С0=3,78, А0=3,356, A1=-1,684, А2=0,560, В0=1,940, В1=-2,722, В2=2,928, В3=-1,336, В4=-1,490.

Толщина стенок дистанционирующих решеток 5 выбрана от 0,25 до 0,35 мм, а высота дистанционирующей решетки выбрана от 20 до 50 мм. Форма ячеек может быть выполнена любым известным способом. Дистанционирующие решетки 5 и направляющие каналы 3 предпочтительно выполнить из циркониевого сплава Э635; возможно сочетать сплавы Э635 и Э110: НК из сплава Э635 и ДР из сплава Э110.

Направляющие каналы 3 жестко соединены с дистанционирующими решетками посредством промежуточных втулок 8, размещенных в соответствующих ячейках дистанционирующих решеток. Жесткое соединение 9 направляющих каналов с дистанционирующими решетками осуществляют точечной сваркой, например электроконтактной. Жесткое соединение направляющих каналов с дистанционирующими решетками производят симметрично относительно продольной оси направляющего канала со стороны обоих торцов дистанционирующей решетки на расстоянии не более 0,15 h от торца дистанционирующей решетки. В этом случае существенно повышается изгибная прочность направляющих каналов.

Описываемая тепловыделяющая сборка может быть изготовлена на любом оборудовании, предназначенном для этих целей, и не требует создания принципиально новой оснастки.

157300000009-DOC.tiftifdrawing52где329900000011-DOC.tiftifdrawing54h-высотадистанционирующейрешетки,мм;δ-толщинаэлементов,образующихячейкидистанционирующейрешетки,мм,причемдля8решетокС=39,17,А=5,563,A=-3,482,А=1,332,В=2,245,B=-4,500,В=6,072,В=-3,128,В=-0,620,для9решетокС=22,74,А=4,988,А=-2,985,А=1,119,В=2,225,В=-4,005,В=5,145,В=-2,595,В=-1,113,для10решетокС=13,06,А=4,481,A=-2,568,А=0,932,В=2,203,В=-3,568,В=4,324,В=-2,127,В=-1,510,для11решетокС=8,84,А=4,138,А=-2,281,А=0,811,В=2,170,B=-3,250,В=3,752,В=-1,814,В=-1,675,для12решетокС=6,90,А=3,895,A=-2,088,А=0,732,В=2,126,B=-3,042,В=3,400,В=-1,623,В=-1,695,для13решетокС=5,73,А=3,697,А=-1,937,А=0,667,В=2,068,B=-2,910,В=3,199,В=-1,505,В=-1,651,для14решетокС=4,70,А=3,526,A=-1,813,А=0,614,В=2,003,B=-2,815,В=3,062,В=-1,422,В=-1,575,для15решетокС=3,78,А=3,356,A=-1,684,А=0,560,В=1,940,В=-2,722,В=2,928,В=-1,336,В=-1,490.1.Тепловыделяющаясборкаядерногореактора,содержащаяголовнуюихвостовуючасти,соединенныенаправляющимиканалами,размещеннымивячейкахдистанционирующихрешеток,которыерасположенынарасстояниидруготдругаподлинесборки,отличающаясятем,чтонаправляющиеканалыжесткосоединены,покрайнеймере,сторцевымидистанционирующимирешетками,авысотаhдистанционирующихрешетокитолщинаδстенокячеекдистанционирующейрешеткивыбранытакимобразом,чтоихчисленныезначенияудовлетворяютусловию12.Тепловыделяющаясборкапоп.1,отличающаясятем,чтонаправляющиеканалывыполненыизсплаваЭ635.23.Тепловыделяющаясборкапоп.1,отличающаясятем,чтодистанционирующиерешеткивыполненыизсплаваЭ635илисплаваЭ110.34.Тепловыделяющаясборкапоп.1,отличающаясятем,чтонаправляющиеканалыжесткосоединены,покрайнеймере,сторцевымидистанционирующимирешеткамипосредствомпромежуточныхвтулок,размещенныхвсоответствующихячейкахдистанционирующихрешеток.45.Тепловыделяющаясборкапоп.1,отличающаясятем,чтожесткоесоединениенаправляющихканаловсдистанционирующимирешеткамирасположеносимметричноотносительнопродольнойосинаправляющегоканаласостороныобоихторцовдистанционирующейрешетки.56.Тепловыделяющаясборкапоп.1,отличающаясятем,чтожесткоесоединениенаправляющихканаловсдистанционирующимирешеткамирасположеноотторцадистанционирующейрешеткинарасстояниинеболее0,15h.67.Тепловыделяющаясборкапоп.1,отличающаясятем,чтожесткоесоединениенаправляющихканаловсдистанционирующимирешеткамивыполненоввидеточечнойсварки.78.Тепловыделяющаясборкапоп.1,отличающаясятем,чтоколичествонаправляющихканаловсоставляет18.89.Тепловыделяющаясборкапоп.1,или2,или3,или4,или5,или6,или7,или8,отличающаясятем,чтодиаметрнаправляющихканаловвыбранот12до14мм.9
Источник поступления информации: Роспатент

Showing 21-30 of 163 items.
10.01.2015
№216.013.1cf2

Демпфирующий узел

Изобретение относится к машиностроению. Демпфирующий узел быстровращающейся вертикальной роторной системы включает корпус в виде резервуара, заполненного демпфирующей жидкостью. В резервуаре расположены основной и дополнительный демпферы. Основной демпфер содержит подвижный элемент в виде...
Тип: Изобретение
Номер охранного документа: 0002538838
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2538

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющих сборок (ТВС) ядерных реакторов типа ВВЭР. ТВС содержит дистанцирующую решетку с ободами. На каждой из решеток, на верхней кромке каждой грани обода, а также под уголками посредине между периферийными твэлами...
Тип: Изобретение
Номер охранного документа: 0002540981
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a73

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющей сборки (ТВС) ядерного реактора типа ВВЭР-440. Чехол ТВС соединяется с хвостовиком с помощью 6-ти специальных винтов, имеющих коническую форму головки снизу. На гранях посадочного места концевой детали в средней...
Тип: Изобретение
Номер охранного документа: 0002542324
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3080

Устройство для точного позиционирования на цилиндрической поверхности ротора

Устройство относится к области машиностроения, в частности к робототехнике и технологии изготовления гибких роторов, валов и высокоскоростных роторов газовых центрифуг, и может быть использовано для автоматизации технологического процесса изготовления высокоскоростного ротора газовой...
Тип: Изобретение
Номер охранного документа: 0002543884
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.4231

Аппарат для гидролиза гексафторида урана

Изобретение может быть использовано при получении чистых солей и окислов из гексафторида урана (ГФУ). Аппарат для гидролиза гексафторида урана содержит корпус, в верхней части которого установлены средства для подачи гексафторида урана и орошающего раствора. В корпусе расположено устройство для...
Тип: Изобретение
Номер охранного документа: 0002548443
Дата охранного документа: 20.04.2015
10.10.2015
№216.013.8078

Демпфер

Изобретение относится к машиностроению. Демпфер содержит корпус, заполненный жидкостью. В корпусе установлен опертый через иглу подвижный элемент. Подвижный элемент выполнен в виде тела вращения с закрепленным на нем подшипником опоры ротора. Дополнительный демпфирующий элемент соединен с...
Тип: Изобретение
Номер охранного документа: 0002564485
Дата охранного документа: 10.10.2015
10.05.2016
№216.015.3bf3

Способ изготовления ротора электрической машины и устройство для его изготовления

Изобретение относится к электромашиностроению и может быть использовано при проектировании и изготовлении высокооборотных электрических машин с постоянными магнитами на роторе. Технический результат - повышение технологичности изготовления ротора. Первоначально изготавливают узел из...
Тип: Изобретение
Номер охранного документа: 0002583484
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.6711

Способ термообработки заготовки из нержавеющей хромистой стали

Изобретение относится к области термической обработке и может быть использовано при обработке заготовок высоконагруженных конструкций из стали 20Х13 и 30Х13 с заданными одновременно механическими и магнитными свойствами, в частности, при производстве короткозамкнутых роторов дисковой формы для...
Тип: Изобретение
Номер охранного документа: 0002591901
Дата охранного документа: 20.07.2016
20.02.2019
№219.016.bd1a

Способ получения силана

Изобретение относится к технологии получения силана из природных кварцитов для изготовления особо чистого полупроводникового кремния, используемого в силовой электронике. Силан получают взаимодействием кремнийсодержащих соединений природного происхождения с гидридом лития. В качестве...
Тип: Изобретение
Номер охранного документа: 0002245299
Дата охранного документа: 27.01.2005
20.02.2019
№219.016.bd73

Способ проведения гомогенных и гетерогенных химических реакций с использованием плазмы

Изобретение относится к химии, а именно к химическим технологиям, и может использоваться в электронике для нанесения пленок на подложки и очистки поверхностей травлением, в химической промышленности для получения особо чистых веществ, в том числе объемных твердотельных материалов, в металлургии...
Тип: Изобретение
Номер охранного документа: 0002200058
Дата охранного документа: 10.03.2003
Showing 11-18 of 18 items.
29.05.2019
№219.017.64c9

Способ изготовления многослойных изделий

Изобретение относится к обработке металлов давлением и может быть использовано при производстве многослойных изделий втулочного типа, в частности тепловыделяющих элементов ядерных реакторов. Заявлен способ изготовления многослойных изделий, включающий сборку заготовки сердечника и заготовки...
Тип: Изобретение
Номер охранного документа: 0002253543
Дата охранного документа: 10.06.2005
29.05.2019
№219.017.64d6

Тепловыделяющая сборка ядерного реактора

Тепловыделяющая сборка ядерного реактора относится к атомной энергетике. Техническим результатом изобретения является повышение надежности эксплуатации тепловыделяющей сборки в активной зоне ядерного реактора и улучшения ее гидродинамических характеристик. Опорные ребра хвостовика...
Тип: Изобретение
Номер охранного документа: 0002256243
Дата охранного документа: 10.07.2005
09.06.2019
№219.017.7737

Тепловыделяющая сборка ядерного реактора (варианты)

Изобретение относится к атомной энергетике, а более конкретно к тепловыделяющим сборкам ядерных реакторов с водой под давлением. Техническим результатом изобретения является увеличение изгибной жесткости тепловыделяющих сборок, сохранение изгибной жесткости упомянутых сборок и, как следствие,...
Тип: Изобретение
Номер охранного документа: 0002246142
Дата охранного документа: 10.02.2005
19.06.2019
№219.017.84ca

Способ получения особочистого карбоната лития

Изобретение относится к способу получения особочистого карбоната лития и может найти использование в химической, формацевтической, металлургической и других отраслях промышленности. Способ получения особочистого карбоната лития включает бикарбонизацию водного раствора карбоната лития углекислым...
Тип: Изобретение
Номер охранного документа: 02243157
Дата охранного документа: 27.12.2004
19.06.2019
№219.017.8552

Направляющий канал

Изобретение относится к устройствам атомной энергетики, в частности к элементам конструкции тепловыделяющих сборок энергетических реакторов типа ВВЭР-1000. Направляющий канал состоит из трубы и наконечника. Труба выполнена из материала с низким коэффициентом роста. На трубе с шагом, равным шагу...
Тип: Изобретение
Номер охранного документа: 02231832
Дата охранного документа: 27.06.2004
29.06.2019
№219.017.9a6b

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а более конкретно к тепловыделяющим сборкам для ядерных реакторов с водой под давлением. Тепловыделяющая сборка ядерного реактора содержит хвостовик, закрепленные на хвостовике направляющие каналы, пучок тепловыделяющих элементов, установленных в...
Тип: Изобретение
Номер охранного документа: 0002248631
Дата охранного документа: 20.03.2005
29.06.2019
№219.017.9a6e

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, в особенности к тепловыделяющим сборкам для ядерных реакторов с водой под давлением. Тепловыделяющая сборка ядерного реактора содержит хвостовик, закрепленные на хвостовике направляющие каналы, пучок тепловыделяющих элементов, установленных в...
Тип: Изобретение
Номер охранного документа: 0002248051
Дата охранного документа: 10.03.2005
10.07.2019
№219.017.ab5b

Тепловыделяющая сборка ядерного реактора

Изобретение применяется в атомной энергетике, в особенности в тепловыделяющих сборках для ядерных реакторов с водой под давлением. В тепловыделяющей сборке ядерного реактора направляющие каналы проходят с возможностью взаимного перемещения сквозь дистанционирующие решетки и закрепляются на...
Тип: Изобретение
Номер охранного документа: 0002254624
Дата охранного документа: 20.06.2005
+ добавить свой РИД