×
27.04.2019
219.017.3d56

Результат интеллектуальной деятельности: Космический аппарат для утилизации космического мусора

Вид РИД

Изобретение

№ охранного документа
0002686415
Дата охранного документа
25.04.2019
Аннотация: Изобретение относится к средствам очистки околоземного космического пространства от отработавших свой срок искусственных космических объектов и их обломков. Предложенный космический аппарат (КА) включает в себя ловушку для космического мусора (КМ) и систему утилизации КМ. Ловушка состоит из сходящихся и расходящихся куполо- и конусообразной сетей, связанных между собой тросами с возможностью образования замкнутой полости. Система утилизации обеспечивает переработку КМ в порошок посредством двухваликового измельчителя и барабанно-шаровой мельницы. В корпус КА вмонтирован регенератор воды, из которой посредством мембранно-электродного блока получают газообразные кислород и водород. Последние, смешиваясь с порошком КМ, образуют псевдожидкое топливо для двигателей КА. Техническим результатом является энергетически эффективная утилизация КМ посредством его переработки в псевдожидкое топливо для КА. 21 ил.

Изобретение относится к области космонавтики и предназначено для очистки околоземного космического пространства от отработавших свой срок искусственных спутников Земли, прочих космических объектов и их обломков.

Известен космический аппарат для утилизации космического мусора (Патент на изобретение RU2040448, заявка RU 5025498/23 от 04.02.1992г.), содержащий энергетическую установку, выполненную в виде термоэмиссионного реактора-преобразователя, систему обнаружения тел, подлежащих уничтожению, устройство генерации и направленной передачи энергии, выполненное в виде лазера, снабженного системой охлаждения, и двигательную установку для маневрирования и коррекции орбиты. Лазер выполнен с ядерной накачкой и встроен в термоэмиссионный реактор-преобразователь, а в качестве рабочего тела лазера выбрана смесь газов СО2N2Не. Двигательная установка для маневрирования и коррекции орбиты выполнена электрореактивной.

Недостатком известного устройства является применение лазера, приводящее к образованию более мелких обломков, а также большая масса космического аппарата с ядерным преобразователем.

Наиболее близким аналогом по технической сущности и достигаемому результату является космический аппарат для утилизации космического мусора с двигателем, способным перерабатывать обломки в топливо, сначала измельчая их в порошок посредством планетарной шаровой мельницы; который затем перетирается вольфрамовыми иглами и превращается в плазму (Лей Лан и др., «Сборщик космического мусора: потенциальный охотник за космическим мусором», 2015, https://arxiv.org/abs/1511.07246). Энергия для этого процесса добывается от ядерной и солнечной энергии. Под высоким давлением заряженные частицы приводят в действие сборщик космического мусора, позволяя выполнить орбитальный маневр для захвата космического мусора.

Недостатком устройства является процесс преобразования обломков в плазму, требующий высоких температур, и больших затрат энергии, что сделает проект нецелесообразным и неэкономичным.

В свою очередь, предлагаемый космический аппарат для утилизации космического мусора – сборщик космического мусора (далее используем сокращение – СКМ) может устранить недостатки аналогов и обеспечить эффективность сборки космического мусора, при уменьшении затрат энергии на переработку обломков. СКМ включает ловушку для космического мусора и систему утилизации космического мусора в псевдожидкое топливо для двигателей космического аппарата, на основе измельчённого космического мусора, смешиваемого с кислородом и водородом. В отличие от ближайшего аналога, ловушка для космического мусора состоит из деформируемых куполообразной сети и конусообразной сети, связанных между собой тросами и сходящихся-расходящихся друг относительно друга с возможностью образования замкнутой полости. При обнаружении космического мусора куполообразная сеть автоматически выпускается на тросах из телескопических направляющих балок конусообразной сети, способных затягивать тросы обратно внутрь. Тросы пронизывают куполообразную сеть насквозь, пересекаясь в её вершине. Соединяясь, также посредством тросов, куполообразная и конусообразная сети, образуют замкнутую полость – мусоросборник, сжимающийся по мере поступления космического мусора на утилизацию.

Главным отличием от ближайшего аналога является использование псевдожидкого топлива вместо плазмы. Система утилизации космического мусора обеспечивает его переработку в порошок, который, смешиваясь с кислородом и водородом, образует псевдожидкое топливо для двигателей космического аппарата, посредством двухваликового измельчителя.

Систему поиска космического мусора и управляющее устройство питают веерообразные солнечные панели и панели, служащие обшивкой корпуса СКМ.

Техническим результатом, достигаемым при использовании изобретения, является сборка космического мусора и его утилизация посредством переработки в псевдожидкое топливо, что позволяет очистить околоземное космическое пространство от отработавших свой срок искусственных объектов и их обломков, способных нанести ущерб действующим космическим объектам.

Изобретение поясняется чертежами:

фиг. 1 – общий вид СКМ;

фиг. 2 – СКМ в собранном виде;

фиг. 3 – способ развёртывания СКМ;

фиг. 4а – СКМ с соединёнными куполообразной и конусообразной сетями;

фиг. 4б - соединённые куполообразная и конусообразная сети, образующие замкнутую полость;

фиг. 5 – СКМ с сжатыми куполообразной и конусообразной сетями;

фиг. 6 – блок-схема оборудования СКМ;

фиг. 7 – схема СКМ с сечениями;

фиг. 8 – двухваликовый измельчитель по сечению А-А;

фиг. 9 – барабанно-шаровая мельница по сечению Б-Б;

фиг. 10 – мембранно-электродный блок для получения водорода и кислорода из воды по сечению В-В;

фиг. 11 – резервуар с топливом по сечению Г-Г;

фиг. 12 – трубы системы подачи топлива в двигатели по сечению Д-Д;

фиг. 13 – схема складывания куполообразной и конусообразной сетей;

фиг. 14 – вид развёрнутых куполообразной и конусообразной сетей;

фиг. 15 – вид куполообразной сети;

фиг. 16 – сложенная куполообразная сеть (вид сверху);

фиг. 17а – телескопическая направляющая балка (вид сверху);

фиг. 17б – телескопическая направляющая балка (вид сбоку).

фиг. 18а – отталкивающие пружины в телескопических обручах (вид сверху);

фиг. 18б – отталкивающие пружины в телескопических обручах (вид сбоку).

СКМ состоит из ловушки для космического мусора и системы утилизации космического мусора.

Ловушка для космического мусора (фиг. 1-5) оборудована конусообразной сетью 1 с четырьмя направляющими телескопическими балками 2, корпусом 3 с фотоэлементами и веерообразными солнечными панелями 4, двигателем ориентации 5, тяговыми двигателями 6, а также включает в себя четыре троса 7, втягивающие внутрь куполообразную сеть 8, соединяя её с конусообразной сетью 1 в единую замкнутую полость 9. Складывание (схождение) и развёртывание (расхождение) куполообразной 8 и конусообразной 1 сетей (фиг. 14-17) обеспечивается при помощи телескопических обручей 10 и телескопических балок 2, способных затягивать тросы 7 внутрь телескопических балок 2, и шаровых закрепителей тросов 20. Куполообразная сеть 8 и конусообразная сеть 1 состоят из треугольных звеньев, которые при складывании образуют полотно сжимаемой замкнутой полости 9. Данное строение сетей 8 и 1 обеспечивает создание плотного полотна из треугольных звеньев во избежание запутывания обломков в звеньях сетей.

На фиг. 15 односторонними стрелками показаны направления складывания под натяжениями первого (1) и второго (2) тросов 7 и телескопических обручей 10. Телескопические обручи 10 имеют внутри себя специальные отталкивающие пружины 24 (фиг. 18а и 18б), предназначенные для раскрывания куполообразной сети 8 при ослабевании натяжения тросов 7.

На фиг. 18а и 18б изображен фрагмент куполообразной сети 8 в сложенном и развернутом виде соответственно. Телескопические направляющие балки 2 снабжены электродвигателями 21 с блоками 23 на стойках 22. Электродвигатели 21 обеспечивают наматывание тросов 7 на блок 23 и расположены внутри телескопических балок 2.

Система утилизации космического мусора (фиг. 6-12) содержит двухваликовый измельчитель 11 (сечение А-А, фиг. 8), барабанно-шаровую мельницу 12 (фиг.9), регенератор воды 13, мембранно-электродный блок 14 и трубы системы подачи топлива 16. Трубы регенератора воды 13 интегрированы в корпус 3 СКМ. Барабанно-шаровая мельница 12 (сечение Б-Б) отделена от двухваликого измельчителя 11 решёткой 17 для просеивания мелких обломков. Мембранно-электродный блок 14 для получения водорода и кислорода из воды (сечение В-В, фиг. 10) оснащён трубами с фильтрами для подачи водорода и кислорода 18 в резервуар топлива 15 (фиг. 11) с трубой 19 для поступления обломков.

Непрерывное производство воды осуществляет регенератор воды 13, который выполнен в виде труб, вмонтированных в корпус 3 СКМ, внутри которого для измельчения крупных обломков космического мусора последовательно размещены двухваликовый измельчитель 11, барабанно-шаровая мельница 12, мембранно-электродный блок 14 и резервуар с топливом 15.

Ракета-носитель выводит СКМ на низкую орбиту 600-700 км, в расчетное место скопления обломков, где происходит развёртывание ловушки для сбора космического мусора. Роботизированная система поиска находит местоположение обломков, подлежащих уничтожению. СКМ уничтожает космический мусор, перерабатывая его в топливо, использование которого позволяет космическому аппарату постепенно подниматься на более высокие орбиты, вплоть до орбиты захоронения (>40000 км), очищая космическое пространство от обломков.

В ходе работы СКМ выпускает куполообразную сеть 8 на тросах 7 и, разворачивая тяговые двигатели 6 на 180°, захватывает обломки, продвигаясь сквозь скопление космического мусора. По мере заполнения куполообразной сети 8, происходит втягивание тросов 7 через шаровые закрепители 20
тросов 7 внутрь телескопических балок 2, изображенных на фиг. 1. При этом, сети 8 и 1, образовавшие замкнутую полость 9 (фиг. 4а, фиг. 4б, фиг. 5), стягиваются тросами 7, телескопическими обручами 10 и направляющими телескопическими балками 2 (изображенные на фиг. 17а и 17б), снабжёнными электродвигателем 21 с блоком 23 на стойках 22, способным наматывать тросы 7 на блок 23.

После чего замкнутая полость 9 сжимается, позволяя проталкивать собранный космический мусор в двухваликовый измельчитель 11, где он, охлаждаясь, измельчается (дробится). Охлаждение происходит на случай переработки обломков ступеней ракет-носителей, где еще могли остаться пары топлива, что может спровоцировать взрыв. Данный этап утилизации позволяет разрушить крупные обломки, или цельные спутники для дальнейшей переработки.

Далее, после измельчения, космический мусор просеивается с помощью решётки 17 для просеивания мелких обломков и помещается в барабанно-шаровую мельницу 12 для дробления в мелкодисперсный порошок. В регенераторе воды 13, меньшая часть в газообразном виде поступает в мембранно-электродный блок 14, а оставшаяся часть требуется для продолжения процесса регенерации воды. Из трубы для поступления обломков 19 резервуара с топливом 15 поступает мелкодисперсный порошок, полученный из космического мусора, и одновременно, через трубы 18 из мембранно-электронного блока 14 поступает водород и кислород, образуя смесь, называемую псевдожидким топливом. При этом концентрация мелкодисперсного порошка меньше концентрации газов. По трубам системы подачи топлива 16, в зависимости от поставленной задачи, псевдожидкое топливо поступает в тяговые двигатели 6, в случае сбора мусора или в двигатели ориентации 5, в случае коррекции орбиты КА.

Изначально, СКМ выводится на орбиту с регенератором воды 13, заполненным водой и диоксидом углерода . Регенератор воды 13 использует процесс гидрирования диоксида углерода по реакции Сабатье (см. Голосман Е.З., Ефремов В.Н. Промышленные катализаторы гидрирования оксидов углерода // Катализ в промышленности, С.: 2012, №5, С. 36-55): .

Катализатором данной реакции может служить, например, оксид палладия или оксид платины .

В результате гидрирования по Сабатье, продуктами реакции являются метан и два объема воды . Диоксид углерода получается из побочно-протекающих реакций.

Таким образом, СКМ осуществляет сборку и переработку космического мусора в псевдожидкое топливо, используя при этом электролиз воды, за непрерывное производство которой отвечает процесс гидрирования диоксида углерода по реакции Сабатье. Использование СКМ позволит очистить околоземное пространство от мелких (< 20см) и средних (<1-1.8м) обломов.


Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Космический аппарат для утилизации космического мусора
Источник поступления информации: Роспатент

Showing 51-60 of 99 items.
11.10.2018
№218.016.902e

Способ оценки и максимизации предельного инструментального разрешения космического аппарата дистанционного зондирования земли на местности

Изобретение относится к области оптического приборостроения и касается способа оценки и максимизации предельного инструментального разрешения аппарата дистанционного зондирования земли (КА ДЗЗ) на местности. Способ включает в себя определение по паспортным данным аппаратуры КА ДЗЗ периода...
Тип: Изобретение
Номер охранного документа: 0002669262
Дата охранного документа: 09.10.2018
17.10.2018
№218.016.92d8

Способ подавления канала передачи непрерывной информации путем воздействия на него организованной импульсной помехой

Изобретение относится к области радиоэлектронной борьбы, а именно к станциям радиоэлектронного подавления сигналов в радиолиниях передачи непрерывной информации. Способ подавления информации в радиолинии передачи непрерывной информации заключается в использовании подавляющей помехи в импульсном...
Тип: Изобретение
Номер охранного документа: 0002669775
Дата охранного документа: 16.10.2018
29.12.2018
№218.016.ac76

Способ формирования плат микроструктурных устройств со сквозными металлизированными отверстиями на монокристаллических кремниевых подложках

Изобретение относится к области технологии микроэлектроники, а именно к способам, специально предназначенным для изготовления или обработки плат микроструктурных устройств или систем на монокристаллических кремниевых подложках. Изобретение может быть использовано при изготовлении...
Тип: Изобретение
Номер охранного документа: 0002676240
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.aca6

Способ краткосрочного прогноза землетрясений по данным вертикального зондирования ионосферы с ионозонда

Изобретение относится к области сейсмологии и может быть использовано для краткосрочного прогноза землетрясений. Сущность: осуществляя вертикальное зондирование ионосферы с ионозонда, непрерывно наблюдают критическую частоту отражения. Вычисляют разницу между средним распределением...
Тип: Изобретение
Номер охранного документа: 0002676235
Дата охранного документа: 26.12.2018
02.02.2019
№219.016.b633

Датчик определения заданного порога тока потребления

Изобретение относится к датчику определения заданного порога тока потребления. Технический результат заключается в расширении функциональных возможностей датчика тока за счет регулирования верхнего порога срабатывания. Датчик состоит из датчика тока, двух N-канальных MOSFET транзисторов,...
Тип: Изобретение
Номер охранного документа: 0002678718
Дата охранного документа: 31.01.2019
07.02.2019
№219.016.b7b6

Криогенно-вакуумная установка

Изобретение относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств (аппаратуры), а также систем радиационного захолаживания в условиях...
Тип: Изобретение
Номер охранного документа: 0002678923
Дата охранного документа: 04.02.2019
13.02.2019
№219.016.b964

Интеллектуальная космическая система для управления проектами

Изобретение относится к интеллектуальной космической системе для управления проектами. Технический результат заключается в автоматизации управления проектами. Система содержит совокупность космических аппаратов дистанционного зондирования Земли, связанных с экспертной системой облачной...
Тип: Изобретение
Номер охранного документа: 0002679541
Дата охранного документа: 11.02.2019
14.02.2019
№219.016.b9e5

Наземный автоматизированный комплекс управления космическими аппаратами на базе нейросетевых технологий и элементов искусственного интеллекта с использованием базы знаний на основе технологии блокчейн и способ управления его реконфигурацией

Группа изобретений относится к управлению реконфигурацией наземного автоматизированного комплекса управления космическими аппаратами (НАКУ КА). НАКУ КА и способ управления его реконфигурацией на базе нейросетевых технологий и элементов искусственного интеллекта с использованием базы знаний на...
Тип: Изобретение
Номер охранного документа: 0002679742
Дата охранного документа: 12.02.2019
16.02.2019
№219.016.bb85

Способ назначения ip-адресов в сети персональной спутниковой связи на низкоорбитальных спутниках ретрансляторах с зональной регистрацией абонентских терминалов

Изобретение относится к технологии передачи данных в сети персональной спутниковой связи. Технический результат изобретения заключается в упрощении механизма динамического автоматического присвоения номера подсети в зависимости от местоположения низкоорбитального спутника и абонентского...
Тип: Изобретение
Номер охранного документа: 0002679962
Дата охранного документа: 14.02.2019
02.03.2019
№219.016.d1fd

Герметичный сборочный модуль для монтажа микрорадиоэлектронной аппаратуры, выполненный групповым методом с последующей резкой на модули

Использование: для поверхностного монтажа. Сущность изобретения заключается в том, что герметичный сборочный модуль для монтажа микрорадиоэлектронной аппаратуры, выполненный групповым методом с последующей резкой на модули, содержит герметично соединенные при помощи стеклокерамического припоя...
Тип: Изобретение
Номер охранного документа: 0002680868
Дата охранного документа: 28.02.2019
Showing 1-1 of 1 item.
25.08.2017
№217.015.9e65

Солнечная космическая электростанция

Изобретение относится к области преобразования солнечной энергии и её передачи наземным потребителям. Космическая электростанция содержит солнечный коллектор (1) лепесткового типа, корпус станции (2) и пучок (3) СВЧ-антенн. Коллектор (1) выполнен из пластин (панелей) фотоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002605956
Дата охранного документа: 10.01.2017
+ добавить свой РИД