×
27.04.2019
219.017.3c55

Результат интеллектуальной деятельности: Способ транспортирования высокопарафинистой нефти и/или нефтепродуктов по трубопроводам

Вид РИД

Изобретение

Аннотация: Изобретение относится к области транспортировки нефти по трубопроводам и может быть использовано в работе горячих нефтепроводов, использующих насосные станции для перекачки и станции подогрева для нагрева высоковязких и высокозастывающих нефтей, как правило, насосные и станции подогрева технологически совмещены. Способ транспортирования высокопарафинистой нефти и/или нефтепродукта по трубопроводам, включающий перекачку нефти и/или нефтепродукта с помощью насосных станций и нагрев нефти и/или нефтепродукта на станциях подогрева по пути транспортирования, при этом на каждой станции подогрева и насосной станции вводят в нефть и/или нефтепродукт противотурбулентную присадку, причем активным компонентом противотурбулентной присадки является растворимый в высокопарафинистой нефти/нефтепродукте высокомолекулярный полимер. Техническим результатом предлагаемого изобретения является повышение эффективности процесса «горячей перекачки» вязких углеводородных жидкостей по трубопроводам за счет снижения путевых тепловых потерь, достигаемого вводом противотурбулентной присадки. 1 табл.

Изобретение относится к области транспортировки нефти по трубопроводам и может быть использовано в работе горячих нефтепроводов, использующих насосные станции для перекачки и станции подогрева для нагрева высоковязких и высокозастывающих нефтей, при этом, как правило, насосные станции и станции подогрева технологически совмещены.

Существуют технические проблемы, возникающие при транспортировке высоковязких и высокозастывающих нефтей, связанные как со структурой и свойствами самих нефтей, так и с условиями их транспортирования.

Известны технические разработки, направленные на решение этих проблем.

Известен способ воздействия физических полей на поток высоковязких и высокозастывающих нефтей, позволяющий уменьшить гидравлическое сопротивление за счет использования многочастотного акустического сигнала (патент на изобретение RU 2350830 С1, опубл. 27.03.2009 г.).

Известна система, генерирующая по длине трубопровода акустические колебания с частотой, соответствующей резонансной частоте трубопровода (патент на изобретение RU 2570602 С1, опубл. 10.12.2015 г.).

Известно комбинированное воздействие механического и электромагнитного полей (патент на изобретение RU 2584840, опубл. 20.05.2016 г.). Использование физических полей привлекательно с экологической точки зрения, однако их невысокая производительность и невысокий квантовый выход пока сдерживают их распространение

Известен способ подготовки высоковязкой и парафинистой нефти к транспортировке по трубопроводу, при котором высоковязкую нефть перед транспортировкой смешивают (компаундируют) с маловязкой нефтью или газоконденсатом, а если нет такой возможности, то используют специальный разбавитель, который в дальнейшем регенерируют на нефтеперерабатывающем заводе и возвращают по параллельному трубопроводу на место добычи. В качестве разбавителя предлагается использовать продукт термолиза фракций тяжелой нефти, выкипающий при температуре 340-540°С. Предполагается, что такая переработка нефти будет производиться на месте ее добычи (патент на изобретение RU 2470213, опубл. 20.12.2012 г.).

Наиболее распространенным способом уменьшения вязкости тяжелой нефти является ее нагревание, что, с одной стороны обусловлено сильной зависимостью вязкости нефти от температуры, с другой - тем, что сооружение узла подогрева нефти не является технически сложным и не требует больших капиталовложений. Одной из модификаций горячего трубопровода является трубопровод с реверсивной перекачкой. Данный способ предназначен для транспортировки высокозастывающей нефти с малым расходом, в нем используется компромисс между потерями тепла в грунт и использованием грунта в качестве теплоизолятора (патент на изобретение RU 2 523923, опубл. 27.07.2014 г.).

Технической проблемой, присущей «горячим» нефтепроводам, является обеспечение оперативного управления тепловым потоком по сечению трубопровода во избежание излишних энергетических затрат на подогрев нефти с учетом того, что теплоизоляция трубопроводов не способна полностью предотвратить тепловые потери. С целью компенсации неизбежных потерь тепла используют путевой подогрев нефти различного типа. Однако, эксплуатационное оборудование горячего нефтепровода, как правило, не может обеспечить плавное регулирование тепловым потоком для реализации расчетных оптимальных стационарных режимов. С учетом того, что система нефтепровод - грунт постоянно находится в нестационарном состоянии из-за колебаний температуры и реологических свойств перекачиваемой нефти, вопрос регулирования теплопереноса становится еще более острым.

Наиболее близким по технической сущности к заявляемому способу является способ транспортирования высокопарафинистой нефти нефти и/или нефтепродуктов по трубопроводам, включающий нагрев жидкости по пути транспортирования на пунктах подогрева (Черникин, В.И. Перекачка вязких и застывающих нефтей / В.И. Черникин - М.: Гостоптехиздат, 1958. - 164 с). Существенным недостатком данного способа является то, что наибольшую неопределенность в методику расчета стационарного теплового режима «горячих» нефтепроводов вносит коэффициент теплопередачи, который зависит от множества факторов и носит сезонный характер.

Целью изобретения является разработка нового способа перекачки углеводородных жидкостей по «горячему» трубопроводу при снижении их теплоотдачи, достигаемого вводом полимерной присадки.

Техническим результатом предлагаемого изобретения является повышение эффективности процесса «горячей перекачки» вязких углеводородных жидкостей по трубопроводам за счет снижения путевых тепловых потерь, достигаемого вводом противотурбелентной присадки.

Технический результат достигается за счет способа транспортирования высокопарафинистой нефти и/или нефтепродукта по трубопроводам, включающего перекачку нефти и/или нефтепродукта с помощью насосных станций и нагрев нефти и/или нефтепродукта на станциях подогрева по пути транспортирования, при этом на каждой станции подогрева и насосной станции вводят в нефть и/или нефтепродукт противотурбулентную присадку, причем активным компонентом противотурбулентной присадки является растворимый в высокопарафинистой нефти/нефтепродукте высокомолекулярный полимер.

Следует отметить, что противотурбулентные присадки (ПТП) снижают гидродинамическое сопротивление (DR), подавляют пульсации скорости в радиальном направлении, снижают частоту турбулентных выбросов и радиальную турбулентность, при этом уменьшается и перенос тепла в радиальном направлении. Особенно это проявляется в пристенной области трубопровода, где длинные молекулы полимера, ориентируясь по направлению потока, образуют своего рода «подвижный чулок», препятствующий отводу тепла в грунт.

Главное условие активности ПТП - турбулентный режим течения. При введении ПТП, например, после первой станции подогрева (при фиксированной температуре на выходе) температурный профиль вдоль трубопровода изменяется в сторону повышения температуры, и на следующую станцию подогрева нефть приходит менее охлажденной, чем в отсутствие ПТП. Соответственно, на второй станции подогрева потребуется меньше тепла для доведения нефти до необходимой температуры. Если фиксировать температуру на входе следующей по ходу нефти станции подогрева, то на первой станции подогрева можно несколько снизить рабочую температуру. В обоих случаях имеем выигрыш энергии: в первом случае - на второй станции подогрева, во втором случае - на первой.

Способ транспортирования высокопарафинистой нефти и/или нефтепродуктов по трубопроводам осуществляют следующим образом.

Нефть с высоким содержанием парафина на головной насосной стадии подогревают до температуры около 55°С, чтобы парафиновая фракция нефти полностью растворилась. В большинстве случаев одновременно после нагрева вводят депрессорную присадку, которая призвана снижать температуру застывания нефти в случае аварийной остановки нефтепровода. Здесь же вводят ПТП на основе полимеров высших альфа-олефинов высокой молекулярной массы, которая одновременно оказывает влияние на снижение гидродинамического сопротивления (DR) и теплопереноса (HTR).

На следующую станцию подогрева за счет тепла, сохраненного по пути следования с помощью ПТП, нефть приходит менее остывшей, и потребуется уже меньше тепла для ее доведения до необходимой температуры. В связи с тем, что после прохождения ПТП через технологическое оборудование следующей станции подогрева структура присадки разрушается, здесь также вводят ПТП и повторяют эту процедуру на каждой станции подогрева. Единственным ограничением для ввода ПТП служит переход турбулентного режима потока в ламинарный с превалированием последнего, так как в ламинарном потоке ПТП не активна.

Начало зоны перехода от турбулентного к ламинарному режиму течения углеводородной жидкости и полный коэффициент теплоотдачи определяют по рассчитанному с помощью одной из модификаций формулы Шухова или эмпирически определенному распределению температуры при перекачке жидкости, в частности, высокопарафинистой нефти и/или нефтепродуктов. Исходя из цели применения присадки, путем гидравлического расчета устанавливают необходимую концентрацию полимера в жидкости и полный коэффициент теплоотдачи от жидкости в окружающую среду, соответствующий этой концентрации. Рассчитывают распределение температуры при перекачке жидкости с присадкой в условиях идентичных перекачке жидкости без присадки. Величина отклонения вычисленной и исходной температуры в зоне смены режимов, умноженная на коэффициент пересчета дает оценку величины возможного снижения выходной температуры станции подогрева. Производят проверочный расчет распределения температуры по трассе при сниженной выходной температуре. Пересечение кривых исходного и вычисленного распределений температур в зоне перехода от турбулентного к ламинарному режиму течения подтверждает допустимость выбранной величины снижения выходной температуры.

Дополнительно проводят расчет распределения температуры углеводородной жидкости, обработанной ПТП (раствора) при условии идентичности температур углеводородной жидкости, не обработанной ПТП (растворителя) и раствора в начале зоны перехода. Предельную величину потенциального энергосбережения только за счет снижения внутреннего теплопереноса из-за применения присадки с заданной характеристикой HTR от массовой концентрации присадки 9 получают на основе изменения продольного профиля температуры при условии сохранения расходных и напорных характеристик перекачки. Оценочный характер расчетов предполагает последующую эмпирическую проверку.

Определение гидравлических и тепловых характеристик раствора ПТП в высокопарафинистой нефти осуществлен на стенде для определения гидравлических и тепловых характеристик раствора противотурбулентной присадки в высокопарафинистой нефти.

На стенде определяли гидравлическую эффективность присадки, которую затем пересчитывали на гидравлическую эффективность присадки при постоянном расходе ψQ [Особенности работы магистрального нефтепровода с применением противотурбулентной присадки. Гольянов А.И., Гольянов А.А., Михайлов Д.А., Ширяев A.M. Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. - М., 2013. №2(10). - С. 36-47], используя следующие зависимости:

где ΔР - перепад давления, Q - расход жидкости, ψр - эффективность присадки при постоянном давлении; λ - коэффициент гидравлического сопротивления, m - константа, входящая в соотношение для коэффициента λ, записанного в форме Лейбензона, нижние индексы р и s здесь и далее относятся соответственно к раствору и растворителю.

Была приведена сравнительная оценка теплоотдачи в парафинистой нефти (растворитель) и нефти с ПТП (раствор).

Оценка основана на аналогии между процессами переноса тепла и количества движения (импульса) в направлении уменьшения соответственно температуры или величины импульса, которая сохраняется вне зависимости от наличия или отсутствия присадки

Здесь Рr - число Прандтля; ν=μ/ρ - кинематическая вязкость жидкости; α=λT/ρс - коэффициент температуропроводности; Г - "настроечный" параметр расчетной модели; μ - динамическая вязкость; ρ - плотность; λT - коэффициент теплопроводности; с - удельная теплоемкость жидкости.

"Эффективную" величину νp определим с помощью уравнения Дарси - Вейсбаха в форме Лейбензона следующим образом:

Соотношение для величины αр принимает вид:

Полагая, что плотность и теплоемкость жидкости не меняются в результате ввода ПТП, приходим к выражению для коэффициента теплопроводности λТр:

Было проведено вычисление температуры и полного коэффициента теплопередачи. Для вычисления температуры в начале контролируемого участка Тn применим классическую формулу Шухова. Предполагая, что конечная температура раствора и растворителя совпадают, формулу Шухова можно записать в виде

где Т0 - температура окружающей среды; Шу - число Шухова; d - диаметр трубопровода; K - полный коэффициент теплопередачи в системе «трубопровод - окружающая среда» (зависит от способа прокладки трубопровода, наличия изоляции, свойств окружающей среды и т.д.); L - длина трубопровода; с - теплоемкость жидкости (может быть принята одинаковой для раствора и растворителя); G - массовый расход жидкости.

Полный коэффициент теплопередачи, в общем случае, имеет вид:

здесь α1 - внутренний коэффициент теплоотдачи жидкости; α2 - внешний коэффициент теплоотдачи; Diz - внешний диаметр изоляции; λTi - коэффициент теплопроводности слоя; Di, Di+1 - внутренний и наружный диаметр i-го слоя.

Внутренний коэффициент теплоотдачи для турбулентного течения описывают следующей зависимостью:

где Nu, Re - критерии Нуссельта и Рейнольдса соответственно.

Кроме того, было проведено определение расчетной величины снижения температуры на выходе станции подогрева и энергетического выигрыша за счет применения ПТП.

Из соотношений (4, 6, 8, 9) следуют равенства:

Если известны два из трех параметров (ψQ, Г, HTR), то с помощью (7, 10) можно определить расчетную величину снижения температуры на выходе станции подогрева за счет применения ПТП.

Величину Tns определяем расчетным путем: по формуле Шухова или ее модификациям.

Параметр Г определяем путем идентификации по экспериментальным данным, полученным на установке, описанной в примере 1, если время проведения эксперимента будет сравнимо со временем установления стационарного температурного градиента. Полный коэффициент теплоотдачи (8) для растворителя в этом случае (надземная прокладка, отсутствие изоляции и отсутствие обдува воздухом) принимает вид:

здесь α - коэффициент теплоотдачи от внешней стенки трубы в окружающий воздух за счет естественной конвекции; δ - толщина стенки трубы; λM - коэффициент теплопроводности металла стенки трубы.

Расчетная имитационная модель показывает принципиальную возможность асимптотической сходимости к стационарному значению температуры раствора в конце контролируемого участка установки для испытания присадок.

Для применения имитационной модели с параметром Г, идентифицированным по результатам, полученным на установке для испытания ПТП, к трубопроводам другой геометрии необходимо задать правило вычисления величины DR. Для этой цели можно, например, использовать способ, рассмотренный в работе [Лурье М.В., Голунов Н.Н. Использование результатов стендовых испытаний малых противотурбулентных добавок для гидравлических расчетов промышленных трубопроводов. Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. - М., 2016. №4(24). С. 32-37.]. Для вычисления коэффициента гидравлического сопротивления в этой работе предложена следующая зависимость:

где θ - массовая концентрация присадки, ε - относительная шероховатость внутренней поверхности трубы, K1, K2 - функции, зависящие только от аргумента θ, подлежащие идентификации по результатам стендовых экспериментов.

Предполагая, что функции K1(θ), K2(θ) идентифицированы одним из способов работы [Лурье М.В., Голунов Н.Н. Использование результатов стендовых испытаний малых противотурбулентных добавок для гидравлических расчетов промышленных трубопроводов. Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. - М., 2016. №4(24). С. 32-37.], применим (12) для прогнозирования величины ψQ в промышленных условиях. Отметим, что в целях идентификации могут быть использованы результаты экспериментов на стенде для испытания присадок. Записывая формулу (12) соответственно для раствора и растворителя в условиях перекачки с фиксированным расходом, приходим к расчетным соотношениям величины ψQ:

Соотношения (13), (14) являются неявными формулами пересчета эффективности присадки ψQ в условиях идентификации функций K1; K2 к другим условиям применения. После определения величины ψQ становится возможным прогнозный расчет влияния присадки на распределение температуры неизотермического трубопровода (путем применения зависимостей (1)-(11)). Приближенная оценка предельной величины изменения полного коэффициента теплоотдачи проведена на основе зависимости, вытекающей из формулы (10), зависимости Вирка и экспериментальной зависимости HTR (DR, Re):

Таким образом, оценка экономии тепловой мощности Е источника подогрева от применения ПТП, в том числе и предельная, возможна с учетом (11)-(15) с помощью следующей расчетной зависимости:

При отсутствии ламинарного режима течения эта экономия может быть реализована на головной и/или путевых станциях подогрева нефти, транспортируемой по горячим нефтепроводам. При наличии ламинарного режима реализация экономии вследствие эффекта снижения внутренней теплоотдачи целесообразна на головной станции подогрева, причем расчетные зависимости должны быть скорректированы в части длины участка, в качестве которой нужно брать длину участка трубопровода с турбулентным режимом течения жидкости.

Пример. На реальном трубопроводе диаметром 720×12 мм протяженностью 2,52×105 м реализован «горячий транспорт нефти» в объеме 831,3 т/час. Прокладка трубопровода подземная (температура грунта 7°С) без тепловой изоляции, гидроизоляция толщиной 2,5 мм. Плотность нефти 900 кг/м3. Начальная температура нефти 47°С (кинематическая вязкость при 50°С 150 сСт, Re=3,1×103). Требуемая температура нефти в пункте приема не ниже 32°С. С этой целью на трассе установлен подогреватель нефти. Параметры существующего режима перекачки приведены в таблице.

Ввод присадки с гидравлической эффективностью 38% при концентрации 200 ррm для рассматриваемого варианта позволяет снизить суммарную необходимую мощность печей на 10,2%. Данный вариант характерен наличием ламинарного режима течения на участке, примыкающем к станции подогрева и плюсовой температурой грунта на глубине заложения трубопровода.

При полностью турбулентном режиме и минусовой температуре грунта тепловой эффект от ввода присадки проявляется более существенным образом. Так, если в условиях идентичных вышеприведенному примеру гипотетически принять температуру грунта конечного участка равной -3°С, то выходная температура 48,5°С станции подогрева за счет применения присадки могла быть снижена на 2°С. Это соответствует снижению потребляемой мощности печей на 7,3%. Величина снижения мощности в исходном варианте составляла 6,2% от потребления мощности при перекачке растворителя. При этом также необходимо иметь в виду, что потребляемая мощность печей, увеличилась по сравнению с исходным вариантом и составила 14 704 кВт.

Предлагаемый способ транспортирования высокопарафинистой нефти и/или нефтепродукта по трубопроводам является универсальным и может применяться безотносительно к скорости потока в горячих нефтепроводах, при обеспечении турбулентного режима течения.

В случае осенне-весенних паводков и аномального снижения температуры в зимний период, когда теплопередача от трубы в окружающую среду существенно возрастает, использование ПТП может быть эффективной альтернативой подключению резервных станций подогрева, причем величину HTR можно плавно регулировать, меняя концентрацию ПТП в потоке.

Способ транспортирования высокопарафинистой нефти и/или нефтепродукта по трубопроводам, включающий перекачку нефти и/или нефтепродукта с помощью насосных станций и нагрев нефти и/или нефтепродукта на станциях подогрева по пути транспортирования, отличающийся тем, что на каждой станции подогрева и насосной станции вводят в нефть и/или нефтепродукт противотурбулентную присадку, причем активным компонентом противотурбулентной присадки является растворимый в высокопарафинистой нефти/нефтепродукте высокомолекулярный полимер.
Источник поступления информации: Роспатент

Showing 51-60 of 150 items.
10.05.2018
№218.016.4814

Стенд для исследования процессов транспортировки тяжелой и битуминозной нефти

Изобретение относится к области гидродинамики жидкостей, а именно к устройствам (стендам) для исследования процессов прокачки смеси нефтей, парафиноотложения, остывания трубопровода при транспортировке тяжелой и битуминозной нефти. Стенд предназначен для поиска способов повышения эффективности...
Тип: Изобретение
Номер охранного документа: 0002650727
Дата охранного документа: 17.04.2018
18.05.2018
№218.016.50ce

Способ заполнения раствором межтрубного пространства тоннельного перехода магистрального трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при сооружении и/или реконструкции переходов магистральных трубопроводов через естественные и искусственные препятствия, построенные бестраншейными методами. В предложенном способе заполнение раствором межтрубного...
Тип: Изобретение
Номер охранного документа: 0002653277
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.517d

Способ обследования фундаментов насосных агрегатов

Изобретение относится к области обследования технического состояния фундаментов насосных агрегатов и может быть использовано при эксплуатации насосных станций для своевременного предупреждения аварий насосных агрегатов при транспортировке газа, нефти и нефтепродуктов. Способ обследования...
Тип: Изобретение
Номер охранного документа: 0002653215
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.523e

Способ изготовления стенда сухой протяжки для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне

Использование: для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне. Сущность изобретения заключается в том, что используют катушки трубных секций с естественными дефектами с действующих трубопроводов и катушки трубных секций с нанесенными...
Тип: Изобретение
Номер охранного документа: 0002653138
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5a44

Способ измерения радиусов изгиба трубопровода на основе данных диагностического комплекса для определения положения трубопровода

Изобретение относится к измерительной технике и может быть использовано для определения положения трубопровода в пространстве, например в горизонтальной и вертикальной плоскостях при эксплуатации и строительстве трубопроводов. Технический результат – расширение функциональных возможностей на...
Тип: Изобретение
Номер охранного документа: 0002655614
Дата охранного документа: 29.05.2018
20.06.2018
№218.016.647f

Способ внутритрубной диагностики трубопроводов с использованием метода "сухой протяжки"

Использование: для внутритрубной диагностики трубопроводов. Сущность изобретения заключается в том, что c одной стороны трубопровода производят монтаж камеры пуска средств очистки и диагностики (далее - СОД), причем СОДом может быть магнитный дефектоскоп, профилемер или очистной скребок, с...
Тип: Изобретение
Номер охранного документа: 0002658122
Дата охранного документа: 19.06.2018
05.07.2018
№218.016.6ae6

Способ защиты трубопроводов систем пенного пожаротушения и водяного охлаждения резервуаров нефти или нефтепродуктов от воздействия взрыва газовоздушной смеси

Изобретение относится к области пожарной безопасности, а именно к системам пожаротушения стальных вертикальных резервуаров для хранения нефти или нефтепродуктов. Способ защиты трубопроводов системы пожаротушения и системы охлаждения резервуаров от воздействия взрыва газовоздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002659981
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6b04

Рюкзак для переноски оборудования и инструментов

Изобретение относится к приспособлениям для переноски ручных инструментов, а именно к специализированным рюкзакам для переноски товарными операторами инструмента, оборудования и материалов при производстве работ по замеру уровня и отбору проб в резервуарах для приема, хранения, подготовки,...
Тип: Изобретение
Номер охранного документа: 0002660085
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6ba5

Способ оценки эффективности противотурбулентной присадки

Изобретение относится к области гидродинамики жидкостей, в частности к способам оценки эффективности гидродинамического сопротивления углеводородных жидкостей, и может быть использовано при создании гидродинамических стендов для изучения углеводородных жидкостей и испытания присадок к ним,...
Тип: Изобретение
Номер охранного документа: 0002659754
Дата охранного документа: 03.07.2018
05.07.2018
№218.016.6bf9

Стенд для исследования агентов снижения гидравлического сопротивления при транспортировке нефти или нефтепродуктов по трубопроводу

Изобретение относится к области измерительной техники, а именно к экспериментальным стендам для проведения исследования агентов снижения гидравлического сопротивления углеводородной жидкости (нефти и/или нефтепродуктов) (АСГС). Стенд для исследования агентов снижения гидравлического...
Тип: Изобретение
Номер охранного документа: 0002659747
Дата охранного документа: 03.07.2018
Showing 51-60 of 68 items.
13.12.2018
№218.016.a68d

Система регулирования параметров теплоносителя на источнике теплоснабжения в зависимости от внутренней температуры воздуха у потребителей

Изобретение относится к теплоэнергетике и может быть использовано для теплоснабжения жилых и производственных зданий. Система регулирования параметров теплоносителя на источнике теплоснабжения характеризуется тем, что включает в себя потребителя тепловой энергии, источник тепловой энергии и...
Тип: Изобретение
Номер охранного документа: 0002674713
Дата охранного документа: 12.12.2018
03.04.2019
№219.016.faaa

Способ очистки внутренней поверхности резервуаров от донных отложений с применением химических реагентов

Изобретение относится к эксплуатации резервуарных парков магистральных нефтепроводов, а именно к способам очистки стальных вертикальных резервуаров от донных отложений. Способ очистки внутренней поверхности резервуаров от донных отложений с применением химических реагентов, в котором...
Тип: Изобретение
Номер охранного документа: 0002683742
Дата охранного документа: 01.04.2019
26.05.2019
№219.017.6142

Способ получения депрессорной присадки in situ в процессе трубопроводного транспорта высокопарафинистой нефти, обработанной противотурбулентной присадкой

Изобретение относится к способу получения депрессорной присадки in situ в процессе трубопроводного транспорта высокопарафинистой нефти. Способ получения депрессорной присадки in situ заключается в том, что через дозирующее устройство в поток перекачиваемой нефти вводят противотурбулентную...
Тип: Изобретение
Номер охранного документа: 0002689113
Дата охранного документа: 24.05.2019
30.05.2019
№219.017.6bc5

Способ компаундирования нефтей и система его осуществления

Изобретение относится к области трубопроводного транспорта, а именно к способам компаундирования нефти с различными физико-химическими свойствами, в том числе при обеспечении транспортировки высокопарафинистой, высоковязкой нефти и нефти с высоким содержанием серы. В частности, предложена...
Тип: Изобретение
Номер охранного документа: 0002689458
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6bd2

Способ пенной атаки при тушении пожаров в резервуарном парке

Настоящее изобретение относится к области пожарной безопасности, а именно к пенной атаке при тушении пожаров в резервуарном парке (РП) для хранения нефти и нефтепродуктов. Способ пенной атаки при тушении пожаров в резервуарном парке, заключающийся в подаче раствора из пенообразователя типа AFFF...
Тип: Изобретение
Номер охранного документа: 0002689450
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.7184

Способ гидродинамической очистки внутренней поверхности технологических трубопроводов нефте- и нефтепродуктоперекачивающих станций

Изобретение относится к области трубопроводного транспорта, а именно к способам очистки внутренней поверхности технологических трубопроводов объектов магистрального трубопроводного транспорта нефти и нефтепродуктов от асфальтосмолопарафиновых отложений (АСПО) для восстановления нормативного...
Тип: Изобретение
Номер охранного документа: 0002689629
Дата охранного документа: 28.05.2019
09.06.2019
№219.017.762b

Способ определения сигнала от стенки трубы по данным вип cd статистики энергетических линий

Использование: для выявления дефектов трубопровода по данным ультразвукового внутритрубного дефектоскопа. Сущность изобретения заключается в том, что для анализа отраженных от стенки трубопровода ультразвуковых сигналов формируют частотную карту откликов отраженных от внутренней стенки...
Тип: Изобретение
Номер охранного документа: 0002690975
Дата охранного документа: 07.06.2019
08.09.2019
№219.017.c8f8

Комбинированный способ очистки внутренней поверхности технологических трубопроводов нефтеперекачивающих станций при подготовке к перекачке светлых нефтепродуктов

Изобретение относится к области трубопроводного транспорта, а именно к способам очистки внутренней поверхности технологических трубопроводов. Согласно способу освобождают технологические трубопроводы от нефти и/или нефтепродуктов, разделяют каждый из технологических трубопроводов на участки для...
Тип: Изобретение
Номер охранного документа: 0002699618
Дата охранного документа: 06.09.2019
12.09.2019
№219.017.ca63

Стенд для проведения испытаний дыхательных и предохранительных клапанов резервуаров с нефтью и нефтепродуктами

Изобретение относится к стендам для контроля и испытаний дыхательной и предохранительной арматуры, в частности клапанов резервуаров, и предназначено для проверки работоспособности на срабатывание и определение максимальной производительности арматуры. Стенд для проведения испытаний дыхательных...
Тип: Изобретение
Номер охранного документа: 0002699934
Дата охранного документа: 11.09.2019
10.10.2019
№219.017.d436

Устройство контроля качества изготовления фототиристора

Изобретение относится к области силовой электроники и предназначено для неразрушающего контроля качества изготовления фототиристоров на соответствие группе по скорости нарастания напряжения в закрытом состоянии и может быть использовано при производстве фототиристоров и эксплуатации. Устройство...
Тип: Изобретение
Номер охранного документа: 0002702409
Дата охранного документа: 08.10.2019
+ добавить свой РИД