×
27.04.2019
219.017.3c55

Результат интеллектуальной деятельности: Способ транспортирования высокопарафинистой нефти и/или нефтепродуктов по трубопроводам

Вид РИД

Изобретение

Аннотация: Изобретение относится к области транспортировки нефти по трубопроводам и может быть использовано в работе горячих нефтепроводов, использующих насосные станции для перекачки и станции подогрева для нагрева высоковязких и высокозастывающих нефтей, как правило, насосные и станции подогрева технологически совмещены. Способ транспортирования высокопарафинистой нефти и/или нефтепродукта по трубопроводам, включающий перекачку нефти и/или нефтепродукта с помощью насосных станций и нагрев нефти и/или нефтепродукта на станциях подогрева по пути транспортирования, при этом на каждой станции подогрева и насосной станции вводят в нефть и/или нефтепродукт противотурбулентную присадку, причем активным компонентом противотурбулентной присадки является растворимый в высокопарафинистой нефти/нефтепродукте высокомолекулярный полимер. Техническим результатом предлагаемого изобретения является повышение эффективности процесса «горячей перекачки» вязких углеводородных жидкостей по трубопроводам за счет снижения путевых тепловых потерь, достигаемого вводом противотурбулентной присадки. 1 табл.

Изобретение относится к области транспортировки нефти по трубопроводам и может быть использовано в работе горячих нефтепроводов, использующих насосные станции для перекачки и станции подогрева для нагрева высоковязких и высокозастывающих нефтей, при этом, как правило, насосные станции и станции подогрева технологически совмещены.

Существуют технические проблемы, возникающие при транспортировке высоковязких и высокозастывающих нефтей, связанные как со структурой и свойствами самих нефтей, так и с условиями их транспортирования.

Известны технические разработки, направленные на решение этих проблем.

Известен способ воздействия физических полей на поток высоковязких и высокозастывающих нефтей, позволяющий уменьшить гидравлическое сопротивление за счет использования многочастотного акустического сигнала (патент на изобретение RU 2350830 С1, опубл. 27.03.2009 г.).

Известна система, генерирующая по длине трубопровода акустические колебания с частотой, соответствующей резонансной частоте трубопровода (патент на изобретение RU 2570602 С1, опубл. 10.12.2015 г.).

Известно комбинированное воздействие механического и электромагнитного полей (патент на изобретение RU 2584840, опубл. 20.05.2016 г.). Использование физических полей привлекательно с экологической точки зрения, однако их невысокая производительность и невысокий квантовый выход пока сдерживают их распространение

Известен способ подготовки высоковязкой и парафинистой нефти к транспортировке по трубопроводу, при котором высоковязкую нефть перед транспортировкой смешивают (компаундируют) с маловязкой нефтью или газоконденсатом, а если нет такой возможности, то используют специальный разбавитель, который в дальнейшем регенерируют на нефтеперерабатывающем заводе и возвращают по параллельному трубопроводу на место добычи. В качестве разбавителя предлагается использовать продукт термолиза фракций тяжелой нефти, выкипающий при температуре 340-540°С. Предполагается, что такая переработка нефти будет производиться на месте ее добычи (патент на изобретение RU 2470213, опубл. 20.12.2012 г.).

Наиболее распространенным способом уменьшения вязкости тяжелой нефти является ее нагревание, что, с одной стороны обусловлено сильной зависимостью вязкости нефти от температуры, с другой - тем, что сооружение узла подогрева нефти не является технически сложным и не требует больших капиталовложений. Одной из модификаций горячего трубопровода является трубопровод с реверсивной перекачкой. Данный способ предназначен для транспортировки высокозастывающей нефти с малым расходом, в нем используется компромисс между потерями тепла в грунт и использованием грунта в качестве теплоизолятора (патент на изобретение RU 2 523923, опубл. 27.07.2014 г.).

Технической проблемой, присущей «горячим» нефтепроводам, является обеспечение оперативного управления тепловым потоком по сечению трубопровода во избежание излишних энергетических затрат на подогрев нефти с учетом того, что теплоизоляция трубопроводов не способна полностью предотвратить тепловые потери. С целью компенсации неизбежных потерь тепла используют путевой подогрев нефти различного типа. Однако, эксплуатационное оборудование горячего нефтепровода, как правило, не может обеспечить плавное регулирование тепловым потоком для реализации расчетных оптимальных стационарных режимов. С учетом того, что система нефтепровод - грунт постоянно находится в нестационарном состоянии из-за колебаний температуры и реологических свойств перекачиваемой нефти, вопрос регулирования теплопереноса становится еще более острым.

Наиболее близким по технической сущности к заявляемому способу является способ транспортирования высокопарафинистой нефти нефти и/или нефтепродуктов по трубопроводам, включающий нагрев жидкости по пути транспортирования на пунктах подогрева (Черникин, В.И. Перекачка вязких и застывающих нефтей / В.И. Черникин - М.: Гостоптехиздат, 1958. - 164 с). Существенным недостатком данного способа является то, что наибольшую неопределенность в методику расчета стационарного теплового режима «горячих» нефтепроводов вносит коэффициент теплопередачи, который зависит от множества факторов и носит сезонный характер.

Целью изобретения является разработка нового способа перекачки углеводородных жидкостей по «горячему» трубопроводу при снижении их теплоотдачи, достигаемого вводом полимерной присадки.

Техническим результатом предлагаемого изобретения является повышение эффективности процесса «горячей перекачки» вязких углеводородных жидкостей по трубопроводам за счет снижения путевых тепловых потерь, достигаемого вводом противотурбелентной присадки.

Технический результат достигается за счет способа транспортирования высокопарафинистой нефти и/или нефтепродукта по трубопроводам, включающего перекачку нефти и/или нефтепродукта с помощью насосных станций и нагрев нефти и/или нефтепродукта на станциях подогрева по пути транспортирования, при этом на каждой станции подогрева и насосной станции вводят в нефть и/или нефтепродукт противотурбулентную присадку, причем активным компонентом противотурбулентной присадки является растворимый в высокопарафинистой нефти/нефтепродукте высокомолекулярный полимер.

Следует отметить, что противотурбулентные присадки (ПТП) снижают гидродинамическое сопротивление (DR), подавляют пульсации скорости в радиальном направлении, снижают частоту турбулентных выбросов и радиальную турбулентность, при этом уменьшается и перенос тепла в радиальном направлении. Особенно это проявляется в пристенной области трубопровода, где длинные молекулы полимера, ориентируясь по направлению потока, образуют своего рода «подвижный чулок», препятствующий отводу тепла в грунт.

Главное условие активности ПТП - турбулентный режим течения. При введении ПТП, например, после первой станции подогрева (при фиксированной температуре на выходе) температурный профиль вдоль трубопровода изменяется в сторону повышения температуры, и на следующую станцию подогрева нефть приходит менее охлажденной, чем в отсутствие ПТП. Соответственно, на второй станции подогрева потребуется меньше тепла для доведения нефти до необходимой температуры. Если фиксировать температуру на входе следующей по ходу нефти станции подогрева, то на первой станции подогрева можно несколько снизить рабочую температуру. В обоих случаях имеем выигрыш энергии: в первом случае - на второй станции подогрева, во втором случае - на первой.

Способ транспортирования высокопарафинистой нефти и/или нефтепродуктов по трубопроводам осуществляют следующим образом.

Нефть с высоким содержанием парафина на головной насосной стадии подогревают до температуры около 55°С, чтобы парафиновая фракция нефти полностью растворилась. В большинстве случаев одновременно после нагрева вводят депрессорную присадку, которая призвана снижать температуру застывания нефти в случае аварийной остановки нефтепровода. Здесь же вводят ПТП на основе полимеров высших альфа-олефинов высокой молекулярной массы, которая одновременно оказывает влияние на снижение гидродинамического сопротивления (DR) и теплопереноса (HTR).

На следующую станцию подогрева за счет тепла, сохраненного по пути следования с помощью ПТП, нефть приходит менее остывшей, и потребуется уже меньше тепла для ее доведения до необходимой температуры. В связи с тем, что после прохождения ПТП через технологическое оборудование следующей станции подогрева структура присадки разрушается, здесь также вводят ПТП и повторяют эту процедуру на каждой станции подогрева. Единственным ограничением для ввода ПТП служит переход турбулентного режима потока в ламинарный с превалированием последнего, так как в ламинарном потоке ПТП не активна.

Начало зоны перехода от турбулентного к ламинарному режиму течения углеводородной жидкости и полный коэффициент теплоотдачи определяют по рассчитанному с помощью одной из модификаций формулы Шухова или эмпирически определенному распределению температуры при перекачке жидкости, в частности, высокопарафинистой нефти и/или нефтепродуктов. Исходя из цели применения присадки, путем гидравлического расчета устанавливают необходимую концентрацию полимера в жидкости и полный коэффициент теплоотдачи от жидкости в окружающую среду, соответствующий этой концентрации. Рассчитывают распределение температуры при перекачке жидкости с присадкой в условиях идентичных перекачке жидкости без присадки. Величина отклонения вычисленной и исходной температуры в зоне смены режимов, умноженная на коэффициент пересчета дает оценку величины возможного снижения выходной температуры станции подогрева. Производят проверочный расчет распределения температуры по трассе при сниженной выходной температуре. Пересечение кривых исходного и вычисленного распределений температур в зоне перехода от турбулентного к ламинарному режиму течения подтверждает допустимость выбранной величины снижения выходной температуры.

Дополнительно проводят расчет распределения температуры углеводородной жидкости, обработанной ПТП (раствора) при условии идентичности температур углеводородной жидкости, не обработанной ПТП (растворителя) и раствора в начале зоны перехода. Предельную величину потенциального энергосбережения только за счет снижения внутреннего теплопереноса из-за применения присадки с заданной характеристикой HTR от массовой концентрации присадки 9 получают на основе изменения продольного профиля температуры при условии сохранения расходных и напорных характеристик перекачки. Оценочный характер расчетов предполагает последующую эмпирическую проверку.

Определение гидравлических и тепловых характеристик раствора ПТП в высокопарафинистой нефти осуществлен на стенде для определения гидравлических и тепловых характеристик раствора противотурбулентной присадки в высокопарафинистой нефти.

На стенде определяли гидравлическую эффективность присадки, которую затем пересчитывали на гидравлическую эффективность присадки при постоянном расходе ψQ [Особенности работы магистрального нефтепровода с применением противотурбулентной присадки. Гольянов А.И., Гольянов А.А., Михайлов Д.А., Ширяев A.M. Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. - М., 2013. №2(10). - С. 36-47], используя следующие зависимости:

где ΔР - перепад давления, Q - расход жидкости, ψр - эффективность присадки при постоянном давлении; λ - коэффициент гидравлического сопротивления, m - константа, входящая в соотношение для коэффициента λ, записанного в форме Лейбензона, нижние индексы р и s здесь и далее относятся соответственно к раствору и растворителю.

Была приведена сравнительная оценка теплоотдачи в парафинистой нефти (растворитель) и нефти с ПТП (раствор).

Оценка основана на аналогии между процессами переноса тепла и количества движения (импульса) в направлении уменьшения соответственно температуры или величины импульса, которая сохраняется вне зависимости от наличия или отсутствия присадки

Здесь Рr - число Прандтля; ν=μ/ρ - кинематическая вязкость жидкости; α=λT/ρс - коэффициент температуропроводности; Г - "настроечный" параметр расчетной модели; μ - динамическая вязкость; ρ - плотность; λT - коэффициент теплопроводности; с - удельная теплоемкость жидкости.

"Эффективную" величину νp определим с помощью уравнения Дарси - Вейсбаха в форме Лейбензона следующим образом:

Соотношение для величины αр принимает вид:

Полагая, что плотность и теплоемкость жидкости не меняются в результате ввода ПТП, приходим к выражению для коэффициента теплопроводности λТр:

Было проведено вычисление температуры и полного коэффициента теплопередачи. Для вычисления температуры в начале контролируемого участка Тn применим классическую формулу Шухова. Предполагая, что конечная температура раствора и растворителя совпадают, формулу Шухова можно записать в виде

где Т0 - температура окружающей среды; Шу - число Шухова; d - диаметр трубопровода; K - полный коэффициент теплопередачи в системе «трубопровод - окружающая среда» (зависит от способа прокладки трубопровода, наличия изоляции, свойств окружающей среды и т.д.); L - длина трубопровода; с - теплоемкость жидкости (может быть принята одинаковой для раствора и растворителя); G - массовый расход жидкости.

Полный коэффициент теплопередачи, в общем случае, имеет вид:

здесь α1 - внутренний коэффициент теплоотдачи жидкости; α2 - внешний коэффициент теплоотдачи; Diz - внешний диаметр изоляции; λTi - коэффициент теплопроводности слоя; Di, Di+1 - внутренний и наружный диаметр i-го слоя.

Внутренний коэффициент теплоотдачи для турбулентного течения описывают следующей зависимостью:

где Nu, Re - критерии Нуссельта и Рейнольдса соответственно.

Кроме того, было проведено определение расчетной величины снижения температуры на выходе станции подогрева и энергетического выигрыша за счет применения ПТП.

Из соотношений (4, 6, 8, 9) следуют равенства:

Если известны два из трех параметров (ψQ, Г, HTR), то с помощью (7, 10) можно определить расчетную величину снижения температуры на выходе станции подогрева за счет применения ПТП.

Величину Tns определяем расчетным путем: по формуле Шухова или ее модификациям.

Параметр Г определяем путем идентификации по экспериментальным данным, полученным на установке, описанной в примере 1, если время проведения эксперимента будет сравнимо со временем установления стационарного температурного градиента. Полный коэффициент теплоотдачи (8) для растворителя в этом случае (надземная прокладка, отсутствие изоляции и отсутствие обдува воздухом) принимает вид:

здесь α - коэффициент теплоотдачи от внешней стенки трубы в окружающий воздух за счет естественной конвекции; δ - толщина стенки трубы; λM - коэффициент теплопроводности металла стенки трубы.

Расчетная имитационная модель показывает принципиальную возможность асимптотической сходимости к стационарному значению температуры раствора в конце контролируемого участка установки для испытания присадок.

Для применения имитационной модели с параметром Г, идентифицированным по результатам, полученным на установке для испытания ПТП, к трубопроводам другой геометрии необходимо задать правило вычисления величины DR. Для этой цели можно, например, использовать способ, рассмотренный в работе [Лурье М.В., Голунов Н.Н. Использование результатов стендовых испытаний малых противотурбулентных добавок для гидравлических расчетов промышленных трубопроводов. Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. - М., 2016. №4(24). С. 32-37.]. Для вычисления коэффициента гидравлического сопротивления в этой работе предложена следующая зависимость:

где θ - массовая концентрация присадки, ε - относительная шероховатость внутренней поверхности трубы, K1, K2 - функции, зависящие только от аргумента θ, подлежащие идентификации по результатам стендовых экспериментов.

Предполагая, что функции K1(θ), K2(θ) идентифицированы одним из способов работы [Лурье М.В., Голунов Н.Н. Использование результатов стендовых испытаний малых противотурбулентных добавок для гидравлических расчетов промышленных трубопроводов. Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. - М., 2016. №4(24). С. 32-37.], применим (12) для прогнозирования величины ψQ в промышленных условиях. Отметим, что в целях идентификации могут быть использованы результаты экспериментов на стенде для испытания присадок. Записывая формулу (12) соответственно для раствора и растворителя в условиях перекачки с фиксированным расходом, приходим к расчетным соотношениям величины ψQ:

Соотношения (13), (14) являются неявными формулами пересчета эффективности присадки ψQ в условиях идентификации функций K1; K2 к другим условиям применения. После определения величины ψQ становится возможным прогнозный расчет влияния присадки на распределение температуры неизотермического трубопровода (путем применения зависимостей (1)-(11)). Приближенная оценка предельной величины изменения полного коэффициента теплоотдачи проведена на основе зависимости, вытекающей из формулы (10), зависимости Вирка и экспериментальной зависимости HTR (DR, Re):

Таким образом, оценка экономии тепловой мощности Е источника подогрева от применения ПТП, в том числе и предельная, возможна с учетом (11)-(15) с помощью следующей расчетной зависимости:

При отсутствии ламинарного режима течения эта экономия может быть реализована на головной и/или путевых станциях подогрева нефти, транспортируемой по горячим нефтепроводам. При наличии ламинарного режима реализация экономии вследствие эффекта снижения внутренней теплоотдачи целесообразна на головной станции подогрева, причем расчетные зависимости должны быть скорректированы в части длины участка, в качестве которой нужно брать длину участка трубопровода с турбулентным режимом течения жидкости.

Пример. На реальном трубопроводе диаметром 720×12 мм протяженностью 2,52×105 м реализован «горячий транспорт нефти» в объеме 831,3 т/час. Прокладка трубопровода подземная (температура грунта 7°С) без тепловой изоляции, гидроизоляция толщиной 2,5 мм. Плотность нефти 900 кг/м3. Начальная температура нефти 47°С (кинематическая вязкость при 50°С 150 сСт, Re=3,1×103). Требуемая температура нефти в пункте приема не ниже 32°С. С этой целью на трассе установлен подогреватель нефти. Параметры существующего режима перекачки приведены в таблице.

Ввод присадки с гидравлической эффективностью 38% при концентрации 200 ррm для рассматриваемого варианта позволяет снизить суммарную необходимую мощность печей на 10,2%. Данный вариант характерен наличием ламинарного режима течения на участке, примыкающем к станции подогрева и плюсовой температурой грунта на глубине заложения трубопровода.

При полностью турбулентном режиме и минусовой температуре грунта тепловой эффект от ввода присадки проявляется более существенным образом. Так, если в условиях идентичных вышеприведенному примеру гипотетически принять температуру грунта конечного участка равной -3°С, то выходная температура 48,5°С станции подогрева за счет применения присадки могла быть снижена на 2°С. Это соответствует снижению потребляемой мощности печей на 7,3%. Величина снижения мощности в исходном варианте составляла 6,2% от потребления мощности при перекачке растворителя. При этом также необходимо иметь в виду, что потребляемая мощность печей, увеличилась по сравнению с исходным вариантом и составила 14 704 кВт.

Предлагаемый способ транспортирования высокопарафинистой нефти и/или нефтепродукта по трубопроводам является универсальным и может применяться безотносительно к скорости потока в горячих нефтепроводах, при обеспечении турбулентного режима течения.

В случае осенне-весенних паводков и аномального снижения температуры в зимний период, когда теплопередача от трубы в окружающую среду существенно возрастает, использование ПТП может быть эффективной альтернативой подключению резервных станций подогрева, причем величину HTR можно плавно регулировать, меняя концентрацию ПТП в потоке.

Способ транспортирования высокопарафинистой нефти и/или нефтепродукта по трубопроводам, включающий перекачку нефти и/или нефтепродукта с помощью насосных станций и нагрев нефти и/или нефтепродукта на станциях подогрева по пути транспортирования, отличающийся тем, что на каждой станции подогрева и насосной станции вводят в нефть и/или нефтепродукт противотурбулентную присадку, причем активным компонентом противотурбулентной присадки является растворимый в высокопарафинистой нефти/нефтепродукте высокомолекулярный полимер.
Источник поступления информации: Роспатент

Showing 41-50 of 150 items.
17.02.2018
№218.016.2a1e

Способ дуговой сварки тройниковых соединений (велдолетов) магистральных трубопроводов

Изобретение относится к способу дуговой сварки тройникового соединения магистрального трубопровода в виде трубы и велдолета. Выполняют технологическое отверстие в трубе. Осуществляют разделку кромок под сварку, предварительный подогрев кромок в диапазоне температур от 150 до 200°С и нанесение...
Тип: Изобретение
Номер охранного документа: 0002643118
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2a67

Способ дуговой сварки велдолетов из аустенитных сталей к трубопроводу из низкоуглеродистых и низколегированных сталей

Изобретение относится к способу электродуговой сварки велдолетов из аустенитных сталей с трубами из низкоуглеродистых и низколегированных сталей. Выполняют технологическое отверстие в упомянутой трубе, разделывают кромки под сварку и осуществляют предварительный подогрев кромок. Затем наносят...
Тип: Изобретение
Номер охранного документа: 0002643098
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2cd6

Способ увеличения пропускной способности трубопровода (варианты)

Группа изобретений относится к трубопроводному транспорту нефти и нефтепродуктов и может быть использована для увеличения пропускной способности трубопровода, содержащего критические секции участка трубопровода с пониженной несущей способностью до проектного значения. Сущность изобретений...
Тип: Изобретение
Номер охранного документа: 0002643570
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.329c

Станция очистки производственно-дождевых сточных вод

Изобретение относится к области очистных сооружений, а именно к станциям очистки производственно-дождевых сточных вод для переработки дождевых, талых, сточных вод и вод производственного характера. Станция очистки производственно-дождевых сточных вод включает в себя соединенные системой...
Тип: Изобретение
Номер охранного документа: 0002645567
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.32b4

Устройство и способ соединения труб защитного кожуха и размещаемого в нем рабочего трубопровода

Изобретение относится к области магистрального трубопроводного транспорта и может быть использовано при траншейной прокладке трубопровода в защитном кожухе с применением соединений труб, выполненных сваркой. Устройство длясоединения труб защитного кожуха и размещаемого в нем рабочего...
Тип: Изобретение
Номер охранного документа: 0002645378
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3593

Центрирующее устройство

Изобретение относится к области проведения ремонтных работ на аварийных участках магистрального трубопровода, расположенного на слабонесущих грунтах, и может применяться для центрирования труб перед сваркой встречных концов трубопровода при замене дефектного участка трубы. Технический...
Тип: Изобретение
Номер охранного документа: 0002645837
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f6

Способ биологической рекультивации нефтезагрязнённых земель с помощью избыточного активного ила очистных сооружений хозяйственно-бытовых сточных вод

Изобретение относится к охране окружающей среды, а именно к применению избыточного активного ила очистных сооружений хозяйственно-бытовых сточных вод, характеризуется тем, что избыточный активный ил стабилизируют, уплотняют, обеззараживают и обезвоживают, устанавливают класс опасности, который...
Тип: Изобретение
Номер охранного документа: 0002646242
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.3d24

Сейсмостойкая четырехсвайная подвижная опора трубопровода и демпферное устройство для сейсмостойкой четырехсвайной подвижной опоры трубопровода

Группа изобретений относится к области строительства надземных трубопроводов и может быть использована при надземной прокладке трубопроводов в сейсмически опасных районах. Заявленная опора трубопровода состоит из закрепленного на четырех сваях через опорные муфты опорного стола-ростверка с...
Тип: Изобретение
Номер охранного документа: 0002648179
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.4305

Способ подогрева нефти на нефтеперекачивающей станции с резервуарами для хранения нефти

Изобретение относится к области транспорта и хранения нефти, в частности к области подогрева нефти на нефтеперекачивающей станции (далее - НПС) с резервуарами для хранения нефти (резервуарным парком). В соответствии с изобретением после остановки перекачки осуществляют циркуляцию нефти,...
Тип: Изобретение
Номер охранного документа: 0002649731
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4742

Способ проведения внутритрубной диагностики в подвижной жидкостной пробке

Использование: для обнаружения дефектов в стенке трубопровода. Сущность изобретения заключается в том, что перемещают внутритрубный инспекционный прибор по трубопроводу, снабженный передатчиками, сигналы от которых получают и обрабатывают в наземных пунктах обработки, при этом внутритрубный...
Тип: Изобретение
Номер охранного документа: 0002650621
Дата охранного документа: 16.04.2018
Showing 41-50 of 68 items.
10.05.2018
№218.016.4814

Стенд для исследования процессов транспортировки тяжелой и битуминозной нефти

Изобретение относится к области гидродинамики жидкостей, а именно к устройствам (стендам) для исследования процессов прокачки смеси нефтей, парафиноотложения, остывания трубопровода при транспортировке тяжелой и битуминозной нефти. Стенд предназначен для поиска способов повышения эффективности...
Тип: Изобретение
Номер охранного документа: 0002650727
Дата охранного документа: 17.04.2018
05.07.2018
№218.016.6ae6

Способ защиты трубопроводов систем пенного пожаротушения и водяного охлаждения резервуаров нефти или нефтепродуктов от воздействия взрыва газовоздушной смеси

Изобретение относится к области пожарной безопасности, а именно к системам пожаротушения стальных вертикальных резервуаров для хранения нефти или нефтепродуктов. Способ защиты трубопроводов системы пожаротушения и системы охлаждения резервуаров от воздействия взрыва газовоздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002659981
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6ba5

Способ оценки эффективности противотурбулентной присадки

Изобретение относится к области гидродинамики жидкостей, в частности к способам оценки эффективности гидродинамического сопротивления углеводородных жидкостей, и может быть использовано при создании гидродинамических стендов для изучения углеводородных жидкостей и испытания присадок к ним,...
Тип: Изобретение
Номер охранного документа: 0002659754
Дата охранного документа: 03.07.2018
05.07.2018
№218.016.6bf9

Стенд для исследования агентов снижения гидравлического сопротивления при транспортировке нефти или нефтепродуктов по трубопроводу

Изобретение относится к области измерительной техники, а именно к экспериментальным стендам для проведения исследования агентов снижения гидравлического сопротивления углеводородной жидкости (нефти и/или нефтепродуктов) (АСГС). Стенд для исследования агентов снижения гидравлического...
Тип: Изобретение
Номер охранного документа: 0002659747
Дата охранного документа: 03.07.2018
08.07.2018
№218.016.6d67

Горелочная голова горелочного устройства

Изобретение относится к области энергетики, а именно к горелкам для сжигания жидкого и газообразного топлива, и может быть использовано в горелочных устройствах, применяемых в жаротрубных водогрейных котлах малой мощности. Горелочная голова горелочного устройства включает в себя корпус, в...
Тип: Изобретение
Номер охранного документа: 0002660592
Дата охранного документа: 06.07.2018
28.07.2018
№218.016.7692

Способ испытания приборов обнаружения и мониторинга разливов нефти и нефтепродуктов на водной поверхности в натурных условиях и система для осуществления способа

Изобретение предназначено для испытания приборов обнаружения и мониторинга разливов нефти и нефтепродуктов на водной поверхности в натурных условиях. Сущность: измеряют параметры приборов до и после воздействия с последующей регистрацией и обработкой их показаний. При этом сначала на водной...
Тип: Изобретение
Номер охранного документа: 0002662470
Дата охранного документа: 26.07.2018
09.08.2018
№218.016.7a5e

Система постоянного контроля концентрации паров углеводородов нефти и нефтепродуктов в воздухе рабочей зоны при проведении огневых и газоопасных работ

Изобретение относится к промышленной безопасности. Система постоянного контроля концентрации паров углеводородов нефти и нефтепродуктов в воздухе рабочей зоны при проведении огневых и газоопасных работ включает в себя передвижной газоанализатор, блок контроля и управления и блок исполнения...
Тип: Изобретение
Номер охранного документа: 0002663565
Дата охранного документа: 07.08.2018
01.11.2018
№218.016.9904

Способ выделения полярных соединений нефти в процессе ее транспортировки по магистральному нефтепроводу

Изобретение относится к области транспорта и хранения нефти, а именно к области экстракции полярных соединений нефти в процессе ее транспортировки по магистральному нефтепроводу. Способ выделения полярных соединений нефти в процессе ее транспортировки по магистральному нефтепроводу...
Тип: Изобретение
Номер охранного документа: 0002670990
Дата охранного документа: 29.10.2018
14.11.2018
№218.016.9cc1

Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов

Изобретение относится к средствам диагностики технического состояния трубопроводов и может быть использовано для непрерывного мониторинга технического состояния подземных трубопроводов, проложенных в суровых климатических и геологических условиях. Технический результат достигается за счет того,...
Тип: Изобретение
Номер охранного документа: 0002672243
Дата охранного документа: 12.11.2018
14.11.2018
№218.016.9d63

Способ определения протяженности и очередности замены участков линейной части магистральных трубопроводов

Изобретение относится к магистральному трубопроводному транспорту углеводородов, в частности к обеспечению надежности транспортировки и безопасности эксплуатации магистральных трубопроводов за счет эффективного планирования работ по капитальному ремонту, в частности, определения протяженности и...
Тип: Изобретение
Номер охранного документа: 0002672242
Дата охранного документа: 12.11.2018
+ добавить свой РИД