×
23.04.2019
219.017.369c

Результат интеллектуальной деятельности: Способ получения длинномерных прутков ультрамелкозернистых сплавов титан-никель с эффектом памяти формы

Вид РИД

Изобретение

Аннотация: Изобретение относится к области деформационно-термической обработки сплавов титан-никель с эффектом памяти формы и может быть использовано в машиностроении, медицине и технике. Способ получения длинномерных прутков ультрамелкозернистых сплавов титан-никель с эффектом памяти формы включает термомеханическую обработку прутков сплавов титан-никель, сочетающую интенсивную пластическую деформацию, пластическую деформацию и отжиг. Интенсивную пластическую деформацию проводят путем непрерывного равноканального углового прессования с накопленной степенью деформации более 6 в интервалах температур 200-299°C и 551-600°C. Пластическую деформацию осуществляют прокаткой со степенью деформации не менее 30% при температурах 501-600°C, а отжиг осуществляют при температурах 250-349°C. В результате обеспечивается получение длинномерных прутков сплавов титан-никель с эффектом памяти формы с одновременно повышенными механическими свойствами и функциональными характеристиками за счет создания ультрамелкозернистой структуры. 1 табл., 3 пр.

Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы (далее: ЭПФ) на основе интерметаллического соединения TiNi, с целью значительного повышения их механических и функциональных свойств, и может быть использовано в машиностроении, технике и медицине. Особенно привлекательно его использование в медицинских приборах и устройствах для травматологии, ортопедии, стоматологии, минимально-инвазивной хирургии и в других изделий в виде имплантатов и инструментов.

Известен способ изготовления сверхупругого сплава никель-титан [1], согласно которому сплав, содержащий 50-51 ат. % никеля, остальное - титан, подвергают отжигу, холодной деформации со степенью деформирования 15-60%, а затем фиксируют определенную форму сплава и нагревают его до 175-600°С. Однако недостатком данного способа является ограниченная возможность одновременного повышения механических (прочностных и пластических) свойств и функциональных характеристик, таких как обратимая деформация и реактивное напряжение.

Известен также способ получения ультрамелкозернистых (далее: УМЗ) сплавов титан-никель с ЭПФ [2] наиболее близкий аналог к заявленному изобретению. Он включает термомеханическую обработку, сочетающую деформацию и дорекристаллизационный отжиг, отличающийся тем, что перед термомеханической обработкой осуществляют предварительную закалку сплава, деформацию осуществляют в два этапа, причем на первом этапе проводят интенсивную пластическую деформацию путем равноканального углового прессования (далее: РКУП) с накопленной степенью деформации больше 4 в интервале температур 300-550°С, а на втором этапе проводят деформацию прокаткой, или экструзией, или волочением со степенью деформации не менее 20% при температурах 20-500°С, а отжиг проводят при температурах 350-550°С в течение 0,5-2,0 ч. Недостатком прототипа являются невозможность достижения высоких прочностных свойств и реактивного напряжение, требуемого для современных изделий, а также получения длинны прутков, необходимой для изготовления некоторых изделий и устройств из сплавов титан-никель с ЭПФ (например, актуаторов или проволочных направителей).

Известен также способ непрерывного РКУП (принятое в технике название схемы: «РКУП-Конформ»), который включает подачу цельной металлической заготовки в виде прутка в один конец пропускного канала, образованного между окружной канавкой вращающегося диска и неподвижной ограничивающей основой, окружающей вращающийся диск, продвижение заготовки за счет сил трения и вращения диска в направлении к выпускному отверстию, выполненному в ограничивающей основе с возможностью осуществления РКУП. Однако недостатком данного способа является его применения для обработки алюминиевых прутков, которые имеют относительно низкие напряжения течения при деформации и высокую пластичность, что делает их легкодеформируемыми материалами при деформационно-термической обработке, по сравнению со сплавами титан-никель с ЭПФ.

Техническая задача, на решение которой направлено изобретение, заключается в более существенном измельчении микроструктуры и, за счет этого, в повышении механических свойств и функциональных характеристик сплавов титан-никель с ЭПФ в длинномерных прутках.

Технический результат, достигаемый новым способом обработки, заключается в получении одновременно высоких по сравнению с прототипом, предела текучести и реактивного напряжения сплавов титан-никель с ЭПФ в виде длинномерных прутков, пригодных для изготовления изделий и медицинского инструмента повышенной длины.

Указанный технический результат достигается тем, что в известном способе получения УМЗ сплава титан-никель с эффектом памяти формы, включающем термомеханическую обработку прутков сплавов титан-никель, сочетающую интенсивную пластическую деформацию, пластическую деформацию и отжиг, в соответствии с заявленным изобретением, интенсивную пластическую деформацию проводят путем непрерывного РКУП с накопленной степенью деформации более 6, рассчитанную по формуле εN=N(2ctg(ϕ/2)/√3), где N - число проходов, ϕ - угол пересечения каналов оснастки, в интервалах температур 200-299°C и 551-600°C, пластическую деформацию осуществляют прокаткой со степенью деформации не менее 30% при температурах 501-600°C, а отжиг осуществляют при температурах 250-349°C.

Сущность заявленного способа состоит в применении комбинированной деформационно-термической обработки сплавов титан-никель с ЭПФ, включающей

непрерывное РКУП-Конформ на первом этапе, деформацию прокаткой на втором и изотермический отжиг на третьем этапе. Указанная последовательность операций обеспечивает сильное измельчение микроструктуры и за счет этого формирование высоких механических свойств и функциональных характеристик. Интенсивной пластической деформаций непрерывным РКУП-Конформ сплавов титан-никель с ЭПФ формируем однородную УМЗ структуру с размером зерна 200-250 нм, последующей прокаткой дополнительно измельчаем структуру и накапливаем повышенную плотность дислокаций, а отжигом на последнем этапе снимаем избыточные микронапряжения и/или создаем УМЗ состояние с размером зерна/субзерна около 100 нм. Применением непрерывного РКУП-Конформ на первом этапе получаем длинномерный пруток, т.к. за счет особенностей схемы и оборудования длинна получаемых заготовок может быть до нескольких метров, в отличии от обычного РКУП, при котором длинна заготовок ограничена 200 миллиметров.

Способ осуществляют следующим образом. Перед термомеханической обработкой осуществляют предварительную закалку сплава титан-никель. На первом этапе исходную заготовку из сплава титан-никель в крупнозернистом состоянии подвергают интенсивной пластической деформации путем непрерывного РКУП-Конформ. Пруток помещают в устройство для непрерывного РКУП-Конформ и осуществляют многократное продавливание с целью накопления высокой степени деформации (εN) более 6 при определенной температуре в интервалах 200-299°C и 551-600°C. Количество проходов (накопленная степень деформации) определяется требуемыми параметрами структуры для достижения тех или иных свойств. На следующем этапе подвергают пластической деформации прокаткой при температурах 501-600°C. Деформация заготовки по сечению составляет не менее 30%. На последнем этапе заготовку подвергают окончательному отжигу в интервале температур 250-349°C.

Заявленный способ апробирован в Санкт-Петербургском государственном университете и в Уфимском государственном авиационном техническом университете.

Результаты апробации подставлены в виде конкретных примеров реализации.

Пример №1

Исходным материалом является пруток диаметром 10 мм и длиной 1000 мм сплава Ti49,2Ni50,8. Пруток первоначально подвергали гомогенизации при температуре 800°C в течение 1 часа и последующей закалке в воде. Затем пруток подвергали непрерывному РКУП-Конформ при температуре 200°C до достижения накопленной степени деформации более 6. На следующем этапе пруток подвергали прокатке на стане с ручьевыми валками,

заготовку подвергали отжигу при температуре 250°С для снятия избыточных микронапряжений. После проведения обработок проводили контроль микроструктуры, механических и функциональных свойств. В результате реализации способа получен пруток УМЗ сплава Ti49,2Ni50,8 диаметром 8,1 мм и длинной 1500 мм. Данные о микроструктуре, механических свойствах и функциональных характеристиках приведены в Таблице.

Пример №2.

Исходным материалом является пруток диаметром 10 мм и длиной 500 мм сплава Ti49,7Ni50,3. Пруток первоначально подвергали гомогенизации при температуре 800°С в течение 1 часа и последующей закалке в воде. Затем пруток подвергали непрерывному РКУП-Конформ при температуре 450°С до достижения накопленной степени деформации более 8. На следующем этапе пруток подвергали прокатке на стане с ручьевыми валками при комнатной температуре до достижения степени деформации 30%. На последнем этапе заготовку подвергали кратковременному отжигу при температуре 550°С для снятия избыточные микронапряжений и создания УМЗ структуры. После проведения обработок проводили контроль микроструктуры, механических и функциональных свойств. В результате реализации способа получен пруток УМЗ сплава Ti49,7Ni50,3 диаметром 8,3 мм и длинной 730 мм. Данные о микроструктуре, механических свойствах и функциональных характеристиках приведены в Таблице.

Пример №3.

Исходным материалом является пруток диаметром 10 мм и длиной 500 мм сплава Ti49,8Ni50,2. Пруток первоначально подвергали гомогенизации при температуре 800°С в течение 1 часа и последующей закалке в воде. Затем пруток подвергали непрерывному РКУП-Конформ при температуре 600°С до достижения накопленной степени деформации более 10. На следующем этапе пруток подвергали прокатке на стане с ручьевыми валками при температуре 600°С до достижения степени деформации 50%. На последнем этапе заготовку подвергали отжигу при температуре 250°С для снятия избыточных микронапряжений. После проведения обработок проводили контроль микроструктуры, механических и функциональных свойств. В результате реализации способа получен пруток УМЗ сплава Ti49,8Ni50,2 диаметром 7,1 мм и длинной 1000 мм. Данные о микроструктуре, механических свойствах и функциональных характеристиках приведены в Таблице.

Механические свойства, функциональные характеристики и длинна прутков сплава титан-никель с ЭПФ, получаемых в результате реализации способа

В Таблице представлены, способы обработки, средний размер зерна, механические свойства, функциональные характеристики и длинна полученных прутков сплава титан-никель, где σв - предел прочности, σ0,2 - предел текучести, δ - относительное удлинение, εrmax - максимальная обратимая деформация, σrmax - максимальное реактивное напряжение. Для сравнения приведены данные из прототипа.

Как показывают примеры и результаты, приведенные в Таблице, заявленная обработка позволяет формировать УМЗ состояние в длинномерных прутках сплавов титан-никель и одновременному повышению их прочности и реактивного напряжения по сравнению с прототипом.

Технико-экономический эффект заявленного способа состоит в том, что предложенный способ позволяет получать длинномерные прутки УМЗ сплавов титан-никель с ЭПФ с существенно повышенными одновременно механическими свойствами и функциональными характеристиками, которые можно использовать для изготовления медицинских изделий значительной длинны, например, актуаторов или проволочных направителей. Применение данного способа в деформационно-термической обработке сплавов титан-никель с ЭПФ будет способствовать импортозамещению, т.к. позволит получать в России материал для изготовления высокотехнологичных медицинских изделий, которые в настоящее время закупаются за рубежом.

Список использованной литературы 1. JP 6065741, МПК C22F 1/10, опубл. 24.08.94 г., ИСМ, вып. 48, №10/97.

2. Патент РФ №2266973 Опубл. 27.12.2005. Бюл. 36. (прототип).

3. US №7152448, МПК В21С 3/00, опубл. 26.12.2006 г.

Способ получения длинномерных прутков ультрамелкозернистого сплава титан-никель с эффектом памяти формы, включающий термомеханическую обработку прутков сплавов титан-никель, сочетающую интенсивную пластическую деформацию, пластическую деформацию и отжиг, отличающийся тем, что интенсивную пластическую деформацию проводят путем непрерывного равноканального углового прессования с накопленной степенью деформации более 6 в интервалах температур 200-299°C и 551-600°C, пластическую деформацию осуществляют прокаткой со степенью деформации не менее 30% при температуре 501-600°C, а отжиг осуществляют при температуре 250-349°C.
Источник поступления информации: Роспатент

Showing 11-20 of 59 items.
26.08.2017
№217.015.d89a

Охлаждающий комплекс каскадной холодильной установки

Изобретение относится к криогенной технике, в частности к газовой промышленности, и может быть использовано для охлаждения любых газов. Охлаждающий комплекс каскадной холодильной установки содержит корпус с размещенными в нем двумя теплообменниками, основным и дополнительным с вихревым...
Тип: Изобретение
Номер охранного документа: 0002622580
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.dca9

Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки

Изобретение относится к области физической химии, вакуумной технике, управляемого термоядерного синтеза и предназначено для поддержания требуемого вакуума в вакуумном объеме термоядерных установок и удаления из них остатков топлива: изотопов водорода дейтерия и трития, а также для откачки...
Тип: Изобретение
Номер охранного документа: 0002624312
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dd1d

Способ синтеза слоя электроактивного вещества для электродов суперконденсаторов на основе нанокомпозита из металл-кислородных соединений кобальта и никеля

Изобретение относится к области производства электрохимических накопителей энергии, а именно суперконденсаторов, содержащих электроды, обладающие эффектом псевдоемкости. Техническим результатом заявленного изобретения является создание на основе металл-кислородных соединений кобальта(III) и...
Тип: Изобретение
Номер охранного документа: 0002624466
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.dd82

Способ получения фотокатализатора на основе полупроводниковой нано-гетероструктуры cds-wo3-tio2

Изобретение относится к способам получения тройных нано-гетероструктур из полупроводниковых материалов, характеризующихся различной шириной запрещенной зоны, и может быть использовано при разработке фотокатализаторов на основе нано-гетероструктурных материалов в фотоэлектрохимических и...
Тип: Изобретение
Номер охранного документа: 0002624620
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.de5c

Способ выделения штаммов микроорганизмов-деструкторов нефти

Способ выделения микроорганизмов-деструкторов нефти содержит селекцию микроорганизмов-деструкторов с последующим их выделением в чистую культуру. Селекцию проводят с помощью мембранного фильтра, предварительно пропитанного нефтью, который погружают в очищаемую почву на глубину 5-10 см от...
Тип: Изобретение
Номер охранного документа: 0002624667
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.e0d1

Способ для определения границ рабочего диапазона импульсного генератора систем фазовой синхронизации и устройство для его реализации

Изобретение относится к области электротехники, в частности к радиоэлектронике, и может быть использовано в приемо-передающих устройствах и системах связи, измерительной аппаратуре для моделирования систем синхронизации импульсных генераторов и при проектировании различных типов систем фазовой...
Тип: Изобретение
Номер охранного документа: 0002625557
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.ed0b

Способ получения наноразмерного высоколюминесцентного апатита с примесью европия (eu)

Изобретение относится к материаловедению и может быть использовано для получения надежного люминесцентного маркера в медицине и биологии. Сначала смешивают водные растворы, содержащие катионы Са и Eu, при контроле их концентрации и соотношении в растворе. В качестве источников катионов Са и Eu...
Тип: Изобретение
Номер охранного документа: 0002628610
Дата охранного документа: 21.08.2017
20.11.2017
№217.015.efac

Состав мембраны химического сенсора для определения концентрации ионов таллия в водных растворах

Изобретение относится к физико-химическим методам анализа, в частности к потенциометрическому способу определения концентрации ионов таллия в растворах, и касается состава мембраны химического сенсора для определения концентрации ионов таллия в водных растворах. Состав мембраны химического...
Тип: Изобретение
Номер охранного документа: 0002629196
Дата охранного документа: 25.08.2017
29.12.2017
№217.015.f9c8

Способ предоперационного планирования хирургической коррекции деформации стопы на уровне среднего отдела

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для предоперационного планирования хирургической коррекции деформации среднего отдела стопы. Получают рентгенограмму стопы с нагрузкой. Определяют по ней референтные линии и углы. Строят на...
Тип: Изобретение
Номер охранного документа: 0002639430
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fbea

Способ спектрального определения микроэлементного состава вязких органических жидкостей

Способ спектрального определения микроэлементного состава вязких органических жидкостей заключается в том, что анализу подвергается малый объем пробы, который предварительно минерализуется под действием малого объема концентрированной азотной кислоты при нагревании. Пробоподготовка производится...
Тип: Изобретение
Номер охранного документа: 0002638586
Дата охранного документа: 14.12.2017
Showing 11-20 of 29 items.
27.05.2016
№216.015.43d8

Способ обработки низколегированных медных сплавов

Изобретение относится к области обработки специальных проводниковых сплавов, в частности к получению низколегированных медных сплавов, и может быть использовано в электротехнике для изготовления электродов сварочных машин, контактных проводов для электрофицированного транспорта, коллекторных...
Тип: Изобретение
Номер охранного документа: 0002585606
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46e6

Способ интенсивной пластической деформации кручением под высоким давлением при ступенчатом нагреве заготовок

Изобретение относится к обработке металлов давлением и может быть использовано для интенсивной пластической деформации кручением. Для измельчения микроструктуры металлов и повышения их микротвердости, прочности и пластичности способ включает сжатие и последующее кручение заготовки с получением...
Тип: Изобретение
Номер охранного документа: 0002586188
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.bd74

Проводниковый ультрамелкозернистый алюминиевый сплав и способ его получения

Изобретение относится к области цветной металлургии и электротехники, в частности к материалам на основе алюминия, и может быть использовано при получении изделий электротехнического назначения: проводников круглого и квадратного сечения, проводов линий электропередач и токопроводящих...
Тип: Изобретение
Номер охранного документа: 0002616316
Дата охранного документа: 14.04.2017
26.08.2017
№217.015.d7ab

Способ получения заготовок из технически чистого титана с размером зерна менее 0,4 мкм

Изобретение относится к области металлургии, а именно к получению заготовок из технически чистого титана с размером зерна менее 0,4 мкм, и может быть использовано для изготовления полуфабрикатов и изделий, используемых в медицине и технике. Способ получения заготовок из технически чистого...
Тип: Изобретение
Номер охранного документа: 0002622536
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d97e

Способ термомеханической обработки термически-упрочняемых алюминиевых сплавов системы al-cu-mg-mn-ag

Изобретение относится к области металлургии и может быть использовано в авиационно-космической, транспортной и других областях промышленности при изготовлении полуфабрикатов из термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Mn-Ag. Способ включает предварительный гомогенизационный...
Тип: Изобретение
Номер охранного документа: 0002623557
Дата охранного документа: 27.06.2017
20.01.2018
№218.016.1b51

Способ изготовления заготовки из титанового сплава для деталей газотурбинного двигателя

Изобретение относится к машиностроению и может быть использовано при изготовлении деталей газотурбинного двигателя. Заготовку из титанового сплава подвергают равноканальному угловому прессованию, после чего пластически деформируют экструдированием. Равноканальное угловое прессование...
Тип: Изобретение
Номер охранного документа: 0002635989
Дата охранного документа: 17.11.2017
20.01.2018
№218.016.1d37

Способ деформационно-термической обработки аустенитных коррозионностойких сталей

Изобретение относится к области металлургии, а именно к термомеханической обработке аустенитных коррозионно-стойких сталей. Для повышения прочностных свойств стали при температурах деформации ниже температуры рекристаллизации с сохранением однородной аустенитной структуры предварительно...
Тип: Изобретение
Номер охранного документа: 0002640702
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d3f

Способ упрочнения и формирования винтового арматурного стержня

Изобретение относится к области упрочнения и формирования винтового профиля, в частности арматурных стержней, используемых для изготовления железобетонных элементов. Способ включает скручивание арматурной заготовки вокруг своей продольной оси. Повышение прочности арматурных стержней...
Тип: Изобретение
Номер охранного документа: 0002640705
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.1f58

Способ получения заготовки из наноструктурного сплава ti49,3ni50,7 с эффектом памяти формы

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике. Способ получения заготовки из наноструктурного сплава Ti49,3Ni50,7 с эффектом памяти формы...
Тип: Изобретение
Номер охранного документа: 0002641207
Дата охранного документа: 16.01.2018
10.05.2018
№218.016.412d

Способ рентгенофазового анализа нанофаз в алюминиевых сплавах

Использование: для рентгенофазового анализа нанофаз в алюминиевых сплавах. Сущность изобретения заключается в том, что из алюминиевого сплава изготавливают испытуемую фольгу, которую подвергают рентгеновскому излучению, и регистрируют рентгенограмму, по которой идентифицируют и количественно...
Тип: Изобретение
Номер охранного документа: 0002649031
Дата охранного документа: 29.03.2018
+ добавить свой РИД