×
22.04.2019
219.017.3668

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ НАСТРОЙКИ КОМПЛЕКСА БЕСКОНТАКТНЫХ ИЗМЕРЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и направлено на повышение точности настройки комплекса бесконтактных измерений при возможности учета перспективных искажений в процессе обработки результатов измерений. Этот технический результат обеспечивается за счет того, что устройство для настройки комплекса бесконтактных измерений включает платформу и закрепленные на ней шесть объектов, каждый из которых выполнен в виде усеченного конуса с диаметром D в своем основании, причем основания четырех усеченных конусов размещены в одной плоскости, а основания двух других - расположены на расстоянии Н от упомянутой плоскости, причем платформа выполнена с возможностью размещения в поле освещения по меньшей мере одного проекционного оптического устройства и в поле зрения по меньшей мере одного регистрирующего оптического устройства, входящих в комплекс бесконтактных измерений. Четыре усеченных конуса, основания которых размещены в одной плоскости, расположены таким образом, что вершины их конических поверхностей образуют прямоугольник со сторонами А и В. A>2D и B>D для исключения взаимного затенения конических поверхностей усеченных конусов. 3 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и может быть применено для настройки оптических комплексов бесконтактных измерений.

Известно устройство для настройки комплекса бесконтактных измерений (US 5612786, 18.03.1997, G01B 11/24) в который входят, по меньшей мере, две оптические изображающие системы, по меньшей мере, одна из которых является регистрирующим устройством. В качестве оптических систем в данном комплексе бесконтактных измерений использованы камера и проектор. Устройство представляет собой специально изготовленную конструкцию, содержащую усеченные пирамиды, положение вершин которых предварительно определено с достаточно высокой точностью. Поверхности пирамид полагаются плоскими, и при калибровке используются вершины каждой из пирамид, которые определяются как точки пересечения их плоских граней. По этим данным находятся параметры, позволяющие связать непосредственные результаты измерений (положение точки на изображении, фаза полосы) с пространственными координатами соответствующей точки поверхности измеряемого объекта.

Недостатком данного устройства является то, что опорные точки находятся как результат пересечения трех поверхностей, поэтому отклонения от плоскостности при изготовлении каждой из поверхностей влияют на точность калибровки. При этом если одна из трех поверхностей расположена под неудачным ракурсом по отношению к камере или проектору, точность настройки снижается, что налагает дополнительные требования на расположение устройства для настройки.

Технический результат заявленного изобретения - повышение точности настройки комплекса бесконтактных измерений при возможности учета перспективных искажений в процессе обработки результатов измерений.

Для получения заявленного технического результата устройство для настройки комплекса бесконтактных измерений, в который входят, по меньшей мере, две оптические изображающие системы, по меньшей мере, одна из которых является регистрирующим устройством, содержит платформу и закрепленные на ней шесть объектов, выполненных в виде усеченных конусов с диаметром D в своем основании, причем основания четырех из них размещены в одной плоскости, а основания двух других - расположены на расстоянии Н от упомянутой плоскости.

При этом четыре усеченных конуса, основания которых размещены в одной плоскости, расположены таким образом, что вершины их конических поверхностей образуют прямоугольник со сторонами А и В.

Причем для прямоугольника со сторонами А и В должны быть соблюдены следующие соотношения: А>2D и В>D для исключения взаимного затенения конических поверхностей усеченных конусов.

Комплекс бесконтактных измерений может содержать информационно-вычислительную систему.

Под оптической изображающей системой в данном случае понимается устройство, содержащее оптическую систему, позволяющую получить или спроецировать изображения из одной плоскости в другую, например проектор, видеопроектор, камера, фотоаппарат и т.д.

Под регистрирующей системой понимается оптическая изображающая система, формирующая изображения в плоскости, в которой расположена фоточувствительная среда, с помощью которой данное изображение может быть зарегистрировано. К таким устройствам можно отнести видеокамеры (цифровые и пленочные), фотоаппараты и т.п.

Заявленное устройство может применяться для настройки оптических комплексов бесконтактных измерений, основанных на принципах параллакса при наблюдении и/или освещении объекта измерений с двух или более направлений в пространстве. Характерной чертой таких комплексов является возможность вычислений координат точек поверхностей при известном пространственном положении элементов (оптических изображающих систем) комплекса. Пространственное положение элементов комплекса определяется при настройке, которая может осуществляться с помощью заявленного устройства.

В качестве оптических изображающих систем комплекс бесконтактных измерений может включать, по меньшей мере, два регистрирующих устройства (например, две цифровые видеокамеры) или, может включать, по меньшей мере, одно регистрирующее устройство (например, цифровую видеокамеру) и, по меньшей мере, одно проекционное устройство (например, видеопроектор).

Использование предложенного устройства для настройки комплекса бесконтактных измерений позволяет построить итерационную схему вычислений, позволяющую установить пространственное положение для каждой из оптической изображающей системы, входящей в комплекс бесконтактных измерений, относительно устройства для настройки комплекса бесконтактных измерений. Пространственное положение оптической изображающей системы (например, видеопроектора или цифровой видеокамеры) в некоторой заданной системе координат определяется точкой, через которую проходят все лучи системы (центр объектива), двумя углами, характеризующими направление оптической системы, и углом, характеризующим поворот соответственно матрицы, формирующей изображение, или светочувствительной матрицы, вокруг оптической оси системы. До сих пор при использовании цифровых оптических изображающих систем точность получения параметров, необходимых для пересчета данных измерений в реальные размеры ограничивалась пикселом - минимальным элементом разрешения изображения. К тому же не все ранее применяемые схемы настройки позволяли учесть перспективные искажения, что соответствует принятию предположения о бесконечном удалении оптических изображающих систем от объекта измерения, а в реальности приводило к появлению искажений. Применяемые ранее методы не предполагали усреднение по большому количеству элементов изображения (пикселов) при настройке, что приводило к ограничению точности последующих измерений.

Выполнение устройства для настройки комплекса бесконтактных измерений содержащим платформу и закрепленные на ней шесть объектов, выполненных в виде шести усеченных конусов с диаметром D в своем основании, конические поверхности которых являются настроечными, причем основания четырех из них размещены в одной плоскости, а основания двух других - расположены на расстоянии Н от упомянутой плоскости, позволяет получить точки привязки на изображении, по которым производятся вычисления, с субпиксельным разрешением (в результате усреднения по большому массиву видимых (освещаемых) пикселов на конической поверхности каждого усеченного конуса), т.е. приводит к повышению точности настройки комплекса бесконтактных измерений. При этом приведенное выше расположение усеченных конусов позволяет:

- избежать их затенение друг другом при наблюдении и/или освещении устройства для настройки оптическими изображающими системами с разных точек пространства;

- построить итерационную схему вычислений, позволяющую с одной экспозиции провести всю необходимую настройку элементов комплекса бесконтактных измерений, используя в аппроксимации значительное количество элементов разрешения (пикселов) оптических изображающих систем.

К тому же при изготовлении конструктивных элементов заявленного устройства для настройки комплекса бесконтактных измерений может быть использовано стандартное оборудование, которое позволяет их точно выполнить и аттестовать, а для контроля точности изготовления конических поверхностей усеченных конусов можно применить традиционные методы контроля.

Изобретение поясняется схематичным чертежом, на котором изображен общий вид устройства для настройки комплекса бесконтактных измерений.

Устройство для настройки комплекса бесконтактных измерений, который включает, например, цифровую видеокамеру, видеопроектор и компьютер (не показаны), содержит плоскую платформу 1 (выполненную, например, в виде прямоугольника) и закрепленные на ней шесть объектов, выполненных в виде усеченных конусов 2 с диаметром D в своем основании, конические поверхности которых являются настроечными, причем основания четырех из них размещены в одной плоскости, а основания двух других - расположены на расстоянии Н от упомянутой плоскости.

Устройство для настройки комплекса бесконтактных измерений используют следующим образом (рассмотрено на примере настройки комплекса бесконтактных измерений, включающего один видеопроектор и одну цифровую видеокамеру).

Устройство для настройки комплекса бесконтактных измерений размещают в поле освещения проекционного оптического устройства, например видеопроектора, и в поле зрения регистрирующего устройства, например цифровой видеокамеры. Получаемые цифровой видеокамерой изображения устройства для настройки комплекса бесконтактных измерений вводят в информационно-вычислительную систему комплекса, например компьютер. С устройством для настройки комплекса бесконтактных измерений связана система координат пространства, в которой проводятся вычисления. Вычисления проводят как итерационный процесс.

Для получения первого приближения на полученном изображении устройства для настройки комплекса бесконтактных измерений задают приблизительные видимые положения вершин (в пикселах) конических поверхностей усеченных конусов 2 (допускается неточность в определении в 20 и более пикселов). По этим данным приблизительно оценивают и вычисляют усредненный масштаб изображения устройства для настройки комплекса бесконтактных измерений, исчисляемый в миллиметрах на пиксел (перспективными искажениями для формирования первого приближения пренебрегают, поскольку полагают, что видеопроектор и цифровая видеокамера расположены достаточно далеко). Далее, исходя из величины диаметров D конусов 2, выбираются для каждого конуса 2 массивы точек (пикселов) таким образом, чтобы все они принадлежали изображениям конических поверхностей усеченных конусов. Эти данные позволяют построить математическую модель пространственного положения видеопроектора и цифровой видеокамеры (элементов комплекса бесконтактных измерений) в первом приближении, в котором полагают, что цифровая видеокамера и видеопроектор находятся в бесконечности. Основываясь на этой модели, когда приближенное пространственное положение цифровой видеокамеры и видеопроектора известны, получают приближенные координаты пространственного положения массивов точек конических поверхностей каждого усеченного конуса 2, которые аппроксимируют идеальным конусом. При этом, например, с помощью метода наименьших квадратов, определяют, в числе других параметров аппроксимации, уточненное по отношению к первоначально заданным положение вершин конических поверхностей каждого конуса 2 на матрице пикселов цифровой видеокамеры и видеопроектора.

Начиная со второго приближения, учитывают перспективные искажения. По координатам (двумерным в плоскости изображения ПЗС-матрицы камеры и LCD-матрицы видеопроектора) вершин конических поверхностей конусов 2 определяют пространственное положение цифровой видеокамеры и видеопроектора в системе координат устройства для настройки комплекса бесконтактных измерений. В числе определяемых параметров снова получают уточненные направления на видеопроектор или цифровую видеокамеру относительно устройства для настройки комплекса бесконтактных измерений, которые определяются по смещению на изображении середины отрезка, соединяющего вершины конических поверхностей усеченных конусов 2, расположенных на расстоянии Н, по отношению к изображению точки пересечения диагоналей прямоугольника со сторонами А и В. Расстояния до центров проекции (центров объективов) определяют из сопоставления расстояния между серединами сторон прямоугольника и вершинами конических поверхностей усеченных конусов 2, расположенных на расстоянии Н.

На основании этих данных строится уточненная модель пространственного положения видеопроектора и цифровой видеокамеры, учитывающая перспективные искажения (возникающие из-за конечного расстояния между центрами проекции и устройством для настройки комплекса бесконтактных измерений).

Далее действия, описанные для второго приближения, циклически повторяются до достижения заданной точности настройки комплекса бесконтактных измерений.

В том случае, если при настройке комплекса бесконтактных измерений используют две цифровые видеокамеры, то применяют аналогичную схему итераций. При этом предполагают, что на конические поверхности усеченных конусов 2 нанесен любой узор, позволяющий идентифицировать отдельные точки на этих поверхностях аналогично тому, как это производится при дальнейших измерениях объектов.

В результате экспериментальных данных с заявленным устройством для настройки комплекса бесконтактных измерений установлено, что предложенная итерационная схема обладает устойчивой сходимостью, обеспечивая точность вычислений порядка 107 межпиксельного расстояния за несколько десятков итераций.

1.Устройстводлянастройкикомплексабесконтактныхизмерений,включающееплатформуизакрепленныенанейшестьобъектов,каждыйизкоторыхвыполненввидеусеченногоконусасдиаметромDвсвоемосновании,причемоснованиячетырехусеченныхконусовразмещеныводнойплоскости,аоснованиядвухдругихрасположенынарасстоянииНотупомянутойплоскости,причемплатформавыполненасвозможностьюразмещениявполеосвещенияпоменьшеймереодногопроекционногооптическогоустройстваивполезренияпоменьшеймереодногорегистрирующегооптическогоустройства,входящихвкомплексбесконтактныхизмерений.12.Устройствопоп.1,отличающеесятем,чточетыреусеченныхконуса,основаниякоторыхразмещеныводнойплоскости,расположенытакимобразом,чтовершиныихконическихповерхностейобразуютпрямоугольниксосторонамиАиВ.23.Устройствопоп.2,отличающеесятем,чтоA>2DиB>Dдляисключениявзаимногозатененияконическихповерхностейусеченныхконусов.34.Устройствопоп.1,отличающеесятем,чтокомплексбесконтактныхизмеренийдополнительносодержитинформационно-вычислительнуюсистему.4
Источник поступления информации: Роспатент

Showing 41-50 of 86 items.
27.04.2019
№219.017.3de6

Способ испытания газотурбинного двигателя

Изобретение относится к испытаниям газотурбинных двигателей, в частности к способам испытаний газотурбинных двигателей на закрытых стендах, и может найти применение в авиационной промышленности. Изобретение позволяет повысить достоверность результатов испытаний путем уменьшения погрешности...
Тип: Изобретение
Номер охранного документа: 0002252406
Дата охранного документа: 20.05.2005
27.04.2019
№219.017.3dfa

Устройство для прямолинейного перемещения

Изобретение относится к средствам безлюфтового перемещения каретки измерительного устройства и может быть использовано в различных отраслях народного хозяйства: машиностроении, приборостроении, авиастроении и т.п., в частности в устройстве для перемещения контролирующих измерителей лопаток ГТД....
Тип: Изобретение
Номер охранного документа: 0002314935
Дата охранного документа: 20.01.2008
27.04.2019
№219.017.3dfc

Способ ремонта лопаток турбинных машин

Изобретение относится к ремонтному производству и может быть использовано для восстановления лопаток турбинных машин. Определяют линию ремонтного сечения лопатки, по которой удаляют дефектную часть. Пристыковывают платики к боковым сторонам лопатки. Причем одну из сторон каждого платика...
Тип: Изобретение
Номер охранного документа: 0002316418
Дата охранного документа: 10.02.2008
27.04.2019
№219.017.3dfd

Способ обработки деталей

Изобретение относится к машиностроению, в частности к бесконтактной магнитоимпульсной обработке деталей газотурбинных двигателей, работающих в агрессивных высокотемпературных средах в условиях знакопеременных нагрузок. Для повышения технологичности обработки за счет возможности формирования...
Тип: Изобретение
Номер охранного документа: 0002316602
Дата охранного документа: 10.02.2008
27.04.2019
№219.017.3dfe

Способ производства заготовок из порошковых сплавов

Изобретение относится к порошковой металлургии, в частности к производству заготовок из порошковых жаропрочных никелевых сплавов. Может использоваться для изготовления деталей, стойких к окислению при повышенных температурах и работающих в условиях тяжелого нагружения. Порошковый материал...
Тип: Изобретение
Номер охранного документа: 0002316413
Дата охранного документа: 10.02.2008
27.04.2019
№219.017.3e00

Способ определения дефектов в изделии методом теплового неразрушающего контроля

Изобретение относится к контрольно-диагностическим технологиям. Способ включает нагрев изделия, его последующее охлаждение, измерение температуры изделия и определение темпа охлаждения для каждой элементарной площадки поверхности изделия. Охлаждение осуществляют рабочей средой, в качестве...
Тип: Изобретение
Номер охранного документа: 0002315983
Дата охранного документа: 27.01.2008
27.04.2019
№219.017.3e01

Система топливопитания газотурбинного двигателя

Изобретение относится к системам автоматического управления газотурбинных двигателей (ГТД), в частности к системам топливопитания газотурбинных двигателей, и может найти применение в авиадвигателестроении и других областях техники. Система топливопитания газотурбинного двигателя содержит насос...
Тип: Изобретение
Номер охранного документа: 0002315884
Дата охранного документа: 27.01.2008
29.04.2019
№219.017.40cf

Способ наведения луча электронно-лучевой пушки на состыкованные поверхности свариваемых заготовок

Изобретение относится к способу наведения луча электронно-лучевой пушки на состыкованные поверхности свариваемых заготовок и может быть использовано при изготовлении любых ответственных деталей газотурбинных двигателей, где необходимо точное выдерживание геометрических размеров деталей после...
Тип: Изобретение
Номер охранного документа: 0002393069
Дата охранного документа: 27.06.2010
29.04.2019
№219.017.40f9

Способ изготовления блинга газотурбинного двигателя электронно-лучевой сваркой

Изобретение относится к области электронно-лучевой сварки, в частности к способу изготовления блинга газотурбинного двигателя электронно-лучевой сваркой. Способ изготовления блинга газотурбинного двигателя электронно-лучевой сваркой из заготовок в виде лопаток с хвостовиками и с элементами...
Тип: Изобретение
Номер охранного документа: 0002395376
Дата охранного документа: 27.07.2010
29.04.2019
№219.017.416a

Смеситель для приготовления раствора реагента

Изобретение относится к емкостной химической аппаратуре для проведения различных химико-технологических процессов, связанных с необходимостью интенсивного перемешивания исходных компонентов. Устройство можно применять для приготовления смеси реагента с водой путем перемешивания компонентов и...
Тип: Изобретение
Номер охранного документа: 0002382674
Дата охранного документа: 27.02.2010
Showing 1-1 of 1 item.
22.04.2019
№219.017.3664

Способ измерения формы поверхности объекта и представления результатов измерения на упомянутой поверхности

Способ включает проецирование с помощью оптического устройства на поверхность объекта распределения световой интенсивности, регистрацию изображения освещенной поверхности объекта, визуализацию на поверхности объекта с помощью оптического устройства отклонений от измеренного ранее образца....
Тип: Изобретение
Номер охранного документа: 0002295110
Дата охранного документа: 10.03.2007
+ добавить свой РИД