×
19.04.2019
219.017.3450

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УСКОРЕНИЯ СИЛЫ ТЯЖЕСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть использовано в геофизике, астрономии и астрофизике. Согласно изобретению способ и устройство для измерения ускорения силы тяжести основаны на определении угловой скорости вращения волчка и угловой скорости прецессии волчка. Угловую скорость вращения волчка определяют по количеству отражений света от диска в единицу времени, а угловую скорость прецессии волчка - по количеству пересечений светового потока осью волчка. Ускорение силы тяжести вычисляют по формуле , где ω - угловая скорость вращения волчка, ω - угловая скорость прецессии волчка, R - радиус диска, l - расстояние от основания оси до центра тяжести волчка, выполненного в форме диска со светоотражающими сегментами. Благодаря этому может быть повышена точность измерений и расширена область использования. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области геофизики, астрономии и астрофизики, а именно к способам и устройствам измерения ускорения силы тяжести.

Известны способы для измерения абсолютного значения ускорения силы тяжести, например, к ним относятся баллистический и маятниковый.

Баллистический метод основан на измерении ускорения силы тяжести g, определяемом по результатам измерения пути и времени свободного падения оптического уголкового отражателя.

Главными источниками погрешностей баллистического метода являются торможение падающего отражателя окружающим воздухом, взаимодействие с электрическими и магнитными полями, микроколебания фундамента, вращение отражателя, не вертикальность светового луча. Поэтому баллистические гравиметры практически невозможно использовать с подвижных оснований: на надводных и подводных судах, автомобилях, авиатранспорте (Огородова Л.В., Шимбирев Б.П., Юзефович А.П. Гравиметрия, М., «Недра», 1978, с.82).

К наиболее близким к заявляемому по назначению является маятниковый способ измерения ускорения силы тяжести и устройство «Агат», реализующее данный способ, представляющее собой комплекс высокоточной маятниковой аппаратуры (Грушинский Н.П., Сажина М. Гравитационная разведка. «Недра», 1981, с.97). Принцип, лежащий в основе измерений ускорения силы тяжести маятникового способа, заключается в использовании зависимости периода колебаний свободного маятника от ускорения силы тяжести g. Однако данный способ имеет ряд ограничений. Например, для его осуществления необходимо либо предварительное вычисление силы тяжести в исходной точке либо для вычисления абсолютного значения g знание длины маятника с высокой степенью точности, кроме того способ длителен по времени, так как для получения точных значений g необходимо значительно продлить время наблюдения. К недостаткам способа можно отнести также необходимость учета поправок, вызванных колебаниями маятника в плоскостях, отличных от плоскости качания, которые часто непредсказуемы, учета силы трения и изменения температуры.

Гравиметрический комплекс «Агат» для реализации известного способа включает источник питания, стандарт частоты, измерительную систему, состоящую из запускающего устройства, чувствительного элемента в виде трех двухмаятниковых приборов и оптической системы съема информации, соединенной с пересчетным устройством. Маятниковые приборы чувствительного элемента представляют собой два маятника, каждый из которых состоит из кварцевого стержня, скрепленного в верхней части с агатовой головкой, составляющей единую деталь с опорной призмой, а в нижней части стержень сваривается с тяжелым цилиндрическим грузом. Маятники расположены один против другого в плоскости качания и качаются в противофазе. Колебания маятника близки к гармоническим, поэтому для повышения точности определения g можно измерять длительность не одного, а большого числа собственных колебаний маятника. Измерение периода колебаний маятников осуществляется с помощью стандарта частоты. Запись колебаний производится с использованием оптической системы съема информации, включающей источник света, передающей луч света на зеркала, установленные на маятниках, и пересчетное устройство. Пересчетное устройство обеспечивает на выходе цифровую величину периода колебаний и далее по известным зависимостям вычисляют ускорение силы тяжести g.

К недостаткам известного устройства можно отнести ограниченность области его использования и невысокую точность определения ускорения силы тяжести из-за трудности учета помех, вызванных колебаниями маятника в направлениях, отличных от плоскости качания маятника, а также массивность устройства.

Задача заявляемой группы изобретений состоит в повышении точности определения ускорения силы тяжести g и расширении области использования.

Поставленная задача решается способом измерения ускорения силы тяжести g, включающим определение угловой скорости вращения волчка и угловой скорости прецессии волчка, при этом в качестве волчка используют диск со светоотражающими сегментами, насаженный на ось, угловую скорость вращения волчка определяют по количеству отражений света от диска в единицу времени, а угловую скорость прецессии волчка - по количеству пересечений светового потока осью волчка, и затем вычисляют ускорение силы тяжести по формуле, где ω1 - угловая скорость вращения волчка, ω2 - угловая скорость прецессии волчка, R - радиус диска, l - расстояние от основания оси до центра тяжести волчка.

Поставленная задача решается также устройством для измерения ускорения силы тяжести g, содержащим источник питания, пересчетное устройство, соединенное со стандартом частоты и оптической системой съема информации, размещенной в корпусе измерительной системы, включающей чувствительный элемент и систему запуска чувствительного элемента, при этом чувствительный элемент выполнен в виде установленного на твердой платформе волчка в форме диска со светоотражающими сегментами, насаженного на ось, оптическая система съема информации включает два датчика съема информации, каждый из которых состоит из источника и приемника света, при этом один из датчиков установлен с возможностью измерения световых импульсов по количеству пересечений светового потока осью волчка, а другой - с возможностью измерения импульсов, отраженных от светоотражающих сегментов диска, при этом каждый датчик съема информации соединен со своим пересчетным устройством.

Таким образом, за счет значительного увеличения скорости прецессии (колебаний) волчка относительно колебаний маятника и отсутствия влияния на угловые скорости вращения и прецессии волчка наклонов измерительной системы в разных плоскостях заявляемые способ и устройство позволяют решить поставленную задачу - повысить точность определения ускорения силы тяжести g и расширить область использования заявляемой группы изобретений, что особенно важно, например, для морских гравиметрических работ.

Способ измерения ускорения силы тяжести основан на измерении угловых скоростей вращения ω1 и прецессии ω2 волчка, который представляет собой диск со светоотражающими сегментами, насаженный на ось, и последующее определение ускорения силы тяжести по формуле , где R - радиус диска, l - расстояние от основания оси до центра тяжести волчка, при этом ω1 определяют по количеству отражений света от светоотражающих секторов диска, а ω2 - по количеству пересечений светового потока осью.

Известно, что согласно правилу прецессии гироскопа под действием момента сила тяжести Р относительно основания оси (точка О) волчок прецессирует вокруг вертикальной оси (OZ) согласно уравнению

и, следовательно,

(Никитин Н.Н. Курс теоретической механики. М. Высш. шк., 1990. С.607).

Для плоского однородного диска радиусом R и массой М момент инерции J0 относительно точки О равен:

и, подставляя (3) в (2), получим:

,

а

где ω1=2πn1об/мин/60 и ω2=2πn2об/мин/60.

На чертеже представлена принципиальная схема измерительной системы для измерения ускорения силы тяжести, где 1 - система запуска, 2 - ось волчка, О - основание оси, 3 - диск, 4 - светоотражающие сегменты, 5 - платформа, L1, L2 - источники света, D1 - приемник света, отразившегося от светоотражаюших сегментов 4, D2 - приемник света после пересечения света осью волчка, С - центр тяжести волчка.

Заявляемое устройство работает следующим образом.

Система запуска (1) измерительной системы раскручивает волчок, захватывая верхний конец оси (2) волчка и затем поднимаясь вверх. При этом ось (2) волчка начинает прецессировать вокруг вертикальной оси OZ с угловой скоростью ω2 на платформе (5). Источник света L2 и приемник D2 размещены в корпусе (не показан) измерительной системы напротив друг друга так, что при прецессии ось (2) волчка периодически перекрывает световой поток от источника L2. А источник света L1 и приемник D1 расположены в корпусе так, что свет от источника L1, отразившись от светоотражающих сегментов (4), попадает в приемник D1. Угловую скорость ω2 измеряют по количеству пересечений светового потока от L2 в единицу времени. Угловую скорость ω1 волчка определяют по количеству отраженных от светоотражающих сегментов (4) световых импульсов от L1, поступивших в D1 за то же время. Полученные импульсы поступают в пересчетные устройства (не показаны), где вычисляют угловые скорости вращения волчка ω1 и угловую скорость прецессии ω2 и затем по формуле определяют ускорение силы тяжести , где ω1=2πn1об/мин/60 и ω2=2πn2об/мин/60, где l равно ОС - расстояние от основания оси до центра тяжести волчка.

Волчок представляет собой диск, например латунный, со светоотражающими сегментами, насаженный на ось из твердого, коррозионно-стойкого материала, например, стали.

Платформа измерительной системы выполнена из материала, обладающего высокой твердостью, прочностью и малым коэффициентом трения пары ось волчка - платформа, например агата.

В качестве источников и приемников света используют, например, оптопары с открытым оптическим каналом.

Система запуска волчка может быть различной, например выполненной в виде разгоняющего устройства из двух сопряженных конусов, один из которых находится в верхней части разгоняющего устройства и приводится во вращение, например, электромотором или воздушной турбиной, а другой - в верхней части оси волчка.

Для повышения точности измерений корпус измерительной системы может быть выполнен термостатированным и вакуумированным.

Остальные комплектующие устройства: источник питания, стандарт частоты для определения времени измерений, пересчетные устройства, являются стандартными и их параметры зависят от поставленной задачи, а также условий использования. Например, пересчетные устройства могут быть выполнены на базе микропроцессора.

Таким образом, совокупность существенных признаков предложенного способа и устройства позволяют получить заявляемый технический результат - повышение точности измерений и удобства эксплуатации.

Источник поступления информации: Роспатент

Showing 1-10 of 58 items.
20.08.2013
№216.012.5fd4

Подводный планер (варианты)

Изобретение относится к автономным необитаемым подводным самоходным аппаратам (планерам-глайдерам) для исследования водных акваторий. Подводный планер выполнен с возможностью саморегуляции угла атаки крыла в зависимости от скорости и направления набегающего потока без использования...
Тип: Изобретение
Номер охранного документа: 0002490164
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.68ee

Способ определения вертикальной скорости продольных волн в слоях анизотропной среды

Способ относится к области сейсморазведки и может быть использован для изучения геологического строения среды с целью обнаружения месторождений нефти, газа и других полезных ископаемых. Способ основан на определении вертикальной скорости продольных упругих волн в анизотропной среде по величинам...
Тип: Изобретение
Номер охранного документа: 0002492509
Дата охранного документа: 10.09.2013
27.09.2013
№216.012.7052

Способ и устройство для измерения ускорения силы тяжести

Предложены способ и устройство измерения ускорения силы тяжести g. В способе определяют угловую скорость вращения волчка и угловую скорость прецессии волчка в прямом и обратном положениях волчка. В качестве волчка используют насаженный на ось диск со сквозными отверстиями в форме сегмента....
Тип: Изобретение
Номер охранного документа: 0002494405
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.7827

Способ регистрации дыхательных звуков на поверхности грудной клетки и комбинированный приемник для осуществления способа

Изобретение относится к медицине. При осуществлении способа проводят синхронную запись колебаний поверхности грудной клетки двумя датчиками, один из которых записывает колебательное смещение, а другой динамическую силу на поверхности грудной клетки. Отклики датчиков обрабатывают путем...
Тип: Изобретение
Номер охранного документа: 0002496421
Дата охранного документа: 27.10.2013
10.12.2013
№216.012.8a21

Комбинированный гидроакустический приемник для гибкой протяженной буксируемой антенны

Изобретение относится к области гидроакустики и может быть использовано в составе гибкой протяженной буксируемой антенны при проведении гидроакустических исследований, в частности для измерения гидроакустических шумов в морях и океанах. Заявлен комбинированный гидроакустический приемник,...
Тип: Изобретение
Номер охранного документа: 0002501043
Дата охранного документа: 10.12.2013
10.01.2014
№216.012.957c

Автономное устройство для регистрации скорости и направления течения жидкости и газа

Устройство предназначено для определения скорости и направления течения жидкости и газа и может быть использовано как для проводящих, так и для непроводящих сред. Устройство состоит из измерительно-регистрационного блока и узла подвеса, закрепленного на жестком носителе и обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002503962
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9fc6

Способ картирования археологических объектов

Изобретение относится к области магниторазведки и может быть использовано в археологии для выявления границ археологических объектов. Сущность: по квадратной сети наблюдений измеряют магнитную восприимчивость поверхности почвенного слоя. Строят в изолиниях карту магнитной восприимчивости....
Тип: Изобретение
Номер охранного документа: 0002506610
Дата охранного документа: 10.02.2014
10.03.2014
№216.012.aa55

Цифровой комбинированный векторный приемник с синтезированными каналами

Использование: приемник предназначен для проведения векторно-скалярных измерений параметров гидроакустических полей в морях и океанах. Сущность: приемник включает корпус с инерционной массой, расположенной в центре корпуса, шесть АЦП, микропроцессор и три измерительных канала, оси...
Тип: Изобретение
Номер охранного документа: 0002509320
Дата охранного документа: 10.03.2014
10.07.2014
№216.012.da83

Метод пассивного акустического мониторинга придонных газожидкостных потоков

Изобретение относится к экологии, защите и мониторингу окружающей среды и может быть использовано для обнаружения утечек газа из газопроводов и технических систем добычи углеводородов, для локализации и исследований природных источников газов под водой, а также для количественной оценки объемов...
Тип: Изобретение
Номер охранного документа: 0002521717
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc47

Способ оценки потока газа

Изобретение относится к области гидроакустики и может быть использовано для оценки потока газа, например, для оценки потока метана газовых «факелов». Сущность: излучают в направлении дна акустический сигнал. Принимают сигналы обратного излучения звука от каждого из пузырьков, пересекающих за...
Тип: Изобретение
Номер охранного документа: 0002522169
Дата охранного документа: 10.07.2014
+ добавить свой РИД