×
19.04.2019
219.017.341f

Результат интеллектуальной деятельности: ОГНЕСТОЙКИЙ ПОЛИМЕРНЫЙ КОМПОЗИТ ДЛЯ ПАНЕЛЕЙ

Вид РИД

Изобретение

№ охранного документа
0002465290
Дата охранного документа
27.10.2012
Аннотация: Изобретение относится к огнестойким полимерным композитам для панелей, используемых в качестве материала для сердечника композитных строительных панелей и, в частности, панелей, применяемых в системах вентилируемых фасадов. Полимерный композит имеет слоистую структуру, образованную прослойками полимера нанометровой толщины между слоями модифицированного антипиренами бентонита. При этом состав бентонита содержит не менее 70-72% монтмориллонита (ММТ) с содержанием последнего в композите не менее 5 об.%. Заявляемый композит имеет относительно низкую стоимость и высокую огнестойкость. 1 з.п. ф-лы, 2 ил., 1 табл., 7 пр.

Изобретение относится к огнестойким полимерным композитам для панелей, используемых в качестве материала для сердечника композитных строительных панелей и, в частности, панелей, применяемых в системах вентилируемых фасадов.

Известна огнестойкая полиолефиновая композиция (RU 2114134 С1, C08L 23/02, С08К 3/04, С08К 3/22, 27.06.1998), имеющая низкие дымообразование и токсичность, содержащая полиолефин, в качестве которого она содержит полиолефин, который является по крайней мере одним представителем, выбранным из группы, состоящей из полиэтилена, полипропилена, сополимера этилена с этилакрилатом и сополимера этилена с винилацетатом, и в качестве антипиренового компонента сложный гидроксид металла общей формулы Mgl-xMx(OH)2, где М - по крайней мере один двухвалентный металл, выбранный из группы, состоящей из марганца, железа, кобальта, никеля, меди и цинка, и тонкодисперсный углеродный порошок, причем на 100 мас.ч. полиолефиновой смолы приходится 80-130 мас.ч. сложного гидроксида металла и углеродного порошка.

Материал, изготовленный на основе данной композиции, предназначенный для использования в качестве материала для оболочки электрических проводов и кабелей или в качестве материала для различных электрических элементов, нецелесообразно использовать в качестве огнестойкого сердечника для строительных панелей вследствие его достаточно высокой стоимости.

Наиболее близким по технической сущности (техническому назначению) к заявляемому решению является огнестойкий полимерный композит, используемый в панелях, описанных в заявке (RU 2008149670 А, Е04С 2/00, 27.06.2010), представляющий собой гомогенную композицию из полиэтилена, наполненного полыми микросферами золы-уноса, полученными от сжигания углей, внутренние полости микросфер заполнены антипиреном.

Данный композит обладает достаточно высокой огнестойкостью, но при этом производство таких панелей связано со значительными затратами, в частности на выделение из золы-уноса фракции полых микросфер, что существенно сказывается и на стоимости панели.

Задачей настоящего изобретения является снижение стоимости производства огнестойкого полимерного композита для панелей, и, как следствие, снижение стоимости производства строительных панелей, в которых заявляемый огнестойкий полимерный композит может использоваться в качестве материала для изготовления сердечника, с сохранением при этом высокой огнестойкости.

Настоящая задача решается тем, что огнестойкий полимерный композит для панелей на основе полиолефина согласно заявляемому изобретению представляет собой нанокомпозит, имеющий слоистую структуру, образованную прослойками полимера нанометровой толщины, сформированными между слоями модифицированного антипиренами бентонита, в состав которого входит не менее 70-72% монтмориллонита (ММТ), с содержанием последнего в композите 5-15 об.%, при этом бентонит для получения нанокомпозита используют в виде глинопорошка, а содержание антипиренов в бентоните составляет 3-10 мас.%

Огнестойкий полимерный композит для панелей содержит полиолефин, который может быть представлен полиэтиленом или полипропиленом.

Технический результат, достигаемый при реализации заявленного изобретения и заключающийся в снижении стоимости огнестойкого полимерного композита для панелей, и соответственно, снижении цены металлических композитных панелей, применяемых при монтаже навесных вентилируемых фасадов, достигается за счет того, что входящие в состав композита слоистые силикаты, представляющие собой природные материалы с толщиной слоев около 1 нм, длина и ширина которых варьируется от 30 нм до нескольких микрон, имеют широкое распространение и большие объемы залежей, вследствие чего исходный материал, используемый в составе композита, является достаточно легкодоступным и сравнительно недорогим.

Монтмориллонит - основной глинистый минерал бентонитовой глины представляет собой слоистый водный алюмосиликат. В природе чаще встречаются бентонитовые глины с содержанием монтмориллонита 30-60%, такие глины не обладают достаточной слоистостью, эластичностью и термостойкостью. При содержании в глине монтмориллонита выше 70% повышается дисперсность глин, их высокая связующая способность и пластичность, увеличивается огнеупорность бентонитов.

При этом огнестойкость полимера и его низкая горючесть обусловлены тем, что при горении в результате окислительной карбонизации формируются углерод-силикатные слои в структуре полимера, которые изолируют полимер от источника тепла с образованием барьера, препятствующего распространению летучих продуктов разложения полимера в зону горения.

При получении огнестойкого полимерного композита для панелей использовались бентонитовые глины производства ОАО «Хакасский бентонит» с содержанием в них монтмориллонита (ММТ) 70-72%. Глины имеют следующий химический состав, мас.%:

SiO2 - 60.5

TiO2 - 0.11

Al2O3 - 16.25

Fe2O3 - 1.70

FeO - 0.75

MgO - 2.38

MnO - 0.03

CaO - 1.75

Na2O - 0.77

K2O - 1.01

Для получения огнестойкого полимерного композита для панелей был выбран метод интеркалирования в расплаве, смешивания расплавленного полиолефина с минералом из подкласса слоистых силикатов.

Опытные образцы огнестойкого полимерного композита для панелей изготавливали следующим образом. Смешивание проводили в обогреваемом экструдере объемом 250 см3. Экструдер разогревали до температуры 200°С, после чего засыпали в него гранулы полиолефина, в частности полиэтилена, и перемешивали. После полного расплавления полиэтилена в него добавляли глинопорошок монтмориллонита (ММТ), в количестве, не менее 5 об.%. Смесь интенсивно перемешивали при температуре расплава 210-225°С. Затем открывали выходное отверстие экструдера, выдавливали полученную смесь, из которой на ручном прессе формовали пластины (толщина 3 мм, ширина 24 мм, длина до 100 мм). Результаты электронной микроскопии показали равномерное распределение глины в полученном композите.

При изготовлении использовалась как исходная бентонитовая глина, так и глина, модифицированная антипиренами (полифосфат аммония, пептаэритрит). Содержание антипирена составляло от 3 до 10%.

Были изготовлены опытные образцы огнестойкого полимерного композита с содержанием в нем монтмориллонита (ММТ) от 3 до 15 об.%.

Результаты морфологического и элементного исследований образцов полимерного композита методом сканирующей электронной микроскопии, произведенной с помощью сканирующего электронного микроскопа JSM-6390 (JEOL, Япония) с системой рентгеновского микроанализа INCA показали, что композит имеет пластинчатую структуру (фиг.1, 2), при этом толщина слоев укладывается в характерные для наноструктур размеры - не более 0,1 мкм.

Полученные образцы подвергали испытаниям на горючесть

Примеры проведения испытаний сгруппированы в таблице.

Предварительная оценка горючести, определяемая по времени воспламенения и скорости горения, показала следующее.

Воспламенение образцов с содержанием монтмориллонита (ММТ) от 5 до 15% происходило со значительной задержкой по сравнению с контрольным образцом (результаты приведены в таблице). Образование горящих капель не наблюдалось.

В образце с добавлением антипирена (полифосфат аммония) наблюдалось еще большее снижение времени воспламеняемости по сравнению с образцами, имеющими в составе нанокомпозита только монтмориллонит (ММТ) (сравнение образцов №3 и №7).

Таким образом, заявляемый огнестойкий полимерный композит, используемый в качестве сердечника для панелей, обладает устойчивостью к возгоранию, что в сочетании с внешними металлическими слоями, присутствующими в конструкции композитных панелей, обеспечивает высокую огнестойкость этих панелей в целом. Имея при этом сравнительно невысокую стоимость, огнестойкий полимерный композит является перспективным материалом для применения в строительстве.

Горючесть огнестойкого полимерного композита для панелей
Пример № п/п Содержание монтмориллонита (ММТ) в композите (об.%) Время воспламенения, с
1 Контрольный образец (полиэтилен) 11
2 3 12
3 5 15
4 7 16
5 10 18
6 15 18
7 5+5 об.% полифосфата аммония 17

Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
19.04.2019
№219.017.343b

Металлическая композитная панель

Изобретение относится к конструкциям многослойных панелей, а именно к металлическим композитным панелям, которые могут применяться в современном промышленном и гражданском строительстве. Технический результат: снижение стоимости производства панели с сохранением эксплуатационных качеств, в...
Тип: Изобретение
Номер охранного документа: 0002464393
Дата охранного документа: 20.10.2012
Showing 21-30 of 49 items.
13.01.2017
№217.015.8013

Способ получения диацетата бетулинола

Изобретение относится к способу получения диацетата бетулинола, проявляющего противоопухолевую активность. Диацетат бетулинола получают ацетилированием бетулинола уксусной кислотой в присутствии каталитических количеств ортофосфорной кислоты в среде толуола с удалением воды, образующейся в ходе...
Тип: Изобретение
Номер охранного документа: 0002599990
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.a8f3

Энтеросорбент из луба березовой коры

Изобретение относится к фармацевтической промышленности и касается энтеросорбента из луба коры березы. Энтеросорбент из луба березовой коры, который представляет собой измельченный до фракции 1,0-2,0 мм луб коры березы, проэкстрагированный 0,2-0,5% щелочью в 20% растворе этилового спирта и...
Тип: Изобретение
Номер охранного документа: 0002611388
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b4a9

Способ получения дифталата бетулинола

Изобретение относится к способу получения дифталата бетулинола формулы ацилированием бетулинола, в котором в качестве ацилируюшего агента используют фталевую кислоту, и ацилирование проводят сплавлением бетулинола с фталевой кислотой при температуре 180-200°С в течение 2-3 минут при мольном...
Тип: Изобретение
Номер охранного документа: 0002614149
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.c713

Способ комплексной переработки коры березы

Изобретение относится к химической переработке древесных отходов, в частности, к комплексной переработке коры березы с получением ценных химических продуктов. Способ переработки березовой коры включает в себя измельчение коры и разделение ее на луб и бересту; обработку бересты...
Тип: Изобретение
Номер охранного документа: 0002618892
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cc78

Способ комплексной переработки древесины березы

Изобретение относится к химической переработке древесины, конкретно к получению из древесины березы ксилозы, целлюлозного продукта и лигнинового сорбента. Способ включает стадию предгидролиза древесных опилок при атмосферном давлении водным раствором 2-3 мас.% серной кислоты, при гидромодуле 8,...
Тип: Изобретение
Номер охранного документа: 0002620551
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.ce72

Способ сульфатирования ксилана древесины берёзы сульфаминовой кислотой

Изобретение относится к способу сульфатирования ксилана, причем водорастворимые соли сульфатов ксилана могут быть использованы как антикоагулянты крови вместо гепарина. В предложенном способе сульфат ксилана получают сульфатированием ксилана сульфаминовой кислотой в N,N-диметилформамиде. В...
Тип: Изобретение
Номер охранного документа: 0002620597
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce75

Способ сульфатирования ксилана древесины берёзы

Изобретение относится к способу сульфатирования ксилана, причем водорастворимые соли сульфатов ксилана могут быть использованы как антикоагулянты крови вместо гепарина. Предложенный способ сульфатирования ксилана древесины березы хлорсульфоновой кислотой в органическом растворителе отличается...
Тип: Изобретение
Номер охранного документа: 0002620595
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e8a7

Средство с антитромботической активностью

Изобретение относится к области химико-фармацевтической промышленности, а именно к антитромботическому средству, которое может быть эффективным для профилактики и лечения тромботических состояний. Антитромботическое средство на основе сульфатированного целлюлозного материала представляет собой...
Тип: Изобретение
Номер охранного документа: 0002627435
Дата охранного документа: 08.08.2017
29.12.2017
№217.015.fc7d

Способ получения дисукцината бетулинола

Изобретение относится к способу получения дисукцината бетулинола формулы: ацилированием бетулинола, в котором в качестве ацилирующего агента используют янтарную кислоту, при этом ацилирование проводят сплавлением бетулинола с янтарной кислотой при температуре 185-190°C в течение 20-25 минут...
Тип: Изобретение
Номер охранного документа: 0002638160
Дата охранного документа: 12.12.2017
19.01.2018
№218.016.0080

Способ получения органоминеральных удобрений на основе коры березы

Изобретение относится к сельскому хозяйству и может быть использовано для получения органоминеральных удобрений на основе коры березы. Способ включает получение пористой подложки из коры березы с последующей ее пропиткой раствором калийной соли до содержания 5,0-9,0 масс. % калия. Далее...
Тип: Изобретение
Номер охранного документа: 0002629264
Дата охранного документа: 28.08.2017
+ добавить свой РИД