×
19.04.2019
219.017.3399

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА МАГНИЕВЫХ СПЛАВАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники, в частности к микродуговому оксидированию, и может найти применение в машиностроении, авиастроении, компьютерной технике и автомобилестроении. Способ включает электрохимическую обработку при плотности тока 5-25 А/дм и соотношении амплитуд анодного и катодного напряжения поляризации U/U, равном 2-4, в электролите, содержащем, г/л: силикат натрия 5-15, гидроокись щелочного металла 2-12, натрий ванадиевокислый 0,2-1,0, бензотриазол 0,01-0,05 и воду до 1 л. Технический результат: снижение энергоемкости процесса формирования покрытия, повышение коррозионной стойкости покрытий во всеклиматических условиях и повышение пожароустойчивости. 1 табл., 4 пр.

Изобретение относится к получению защитных покрытий на магниевых сплавах путем электрохимической обработки магниевых сплавов микродуговым оксидированием и может найти применение в машиностроении, авиастроении, компьютерной технике и автомобилестроении.

Известен способ получения защитных покрытий на магниевых сплавах, включающий двухстадийную электрохимическую обработку микродуговым оксидированием с последующим нанесением гальванического покрытия. Микродуговое оксидирование осуществляют при постоянном анодном токе плотностью 5-10 А/дм2 в растворе электролита, содержащем силикат натрия, фосфат натрия и гидроокись натрия, при следующем соотношении компонентов, г/л:

Силикат натрия 0,5
Фосфат натрия 2-5
Гидроокись натрия 2-5
Вода До 1 л

(заявка США №2009223829)

Нанесение гальванического покрытия ведут в растворе электролита, содержащем сульфат никеля.

Недостатками известного способа являются высокая трудоемкость и длительность процесса электрохимической обработки магниевых сплавов, использование соединений никеля в растворе электролита требует энергоемких очистительных сооружений.

Также известен способ получения защитных покрытий на магниевых, алюминиевых, титановых сплавах, включающий электрохимическую обработку переменным анодно-катодным током в щелочном электролите, электрохимическую обработку ведут при переменном токе плотностью 30-70 А/дм2 с длительностью импульсов и пауз 100-300 мкс, с соотношением амплитуд анодного и катодного тока 1,06-2, при температуре электролита 15-30°С (патент РФ №2046157).

Недостатками известного способа нанесения покрытий являются пониженные защитные свойства покрытий, высокая энергоемкость технологического процесса.

Наиболее близким аналогом, взятым за прототип, является способ получения защитных покрытий на магниевых сплавах, включающий электрохимическую обработку переменным током в растворе электролита, содержащем силикат натрия и фторид натрия, в котором электрохимическую обработку осуществляют переменным током, при увеличении значения напряжения от 0 до 250-300 В со скоростью 0,25-0,28 В/с и плотности тока 0,5-1,0 А/см2 при анодной поляризации, напряжении 25-30 В при катодной поляризации изделия и соотношении периодов анодной и катодной поляризации τak, равном 1, в течение 8-20 мин в электролите, имеющем следующий химический состав, г/л:

Силикат натрия 12-30
Фторид натрия 5-10
Вода До 1 л

(патент РФ 23 5 7016)

Недостатком известного способа является невозможность получения равномерного по толщине и пористости покрытия на деталях сложной конфигурации, при этом ухудшается адгезия лакокрасочных материалов к покрытию и снижаются его антикоррозионные свойства. Также при воздействии огнем покрытие на магниевом сплаве не обеспечивает защиту от воспламенения.

Технической задачей изобретения является разработка способа получения защитных покрытий на магниевых сплавах с повышенными коррозионной стойкостью и пожароустойчивостью.

Поставленная техническая задача достигается тем, что предложен способ получения защитных покрытий на магниевых сплавах, включающий электрохимическую обработку с переменным током поляризации в растворе электролита, содержащем силикат натрия и воду, в котором электрохимическую обработку осуществляют при плотности тока 5-25 А/дм2 и соотношении амплитуд анодного и катодного напряжения поляризации Uа/Uк, равном 2-4, в электролите, дополнительно содержащем гидроокись щелочного металла, натрий ванадиевокислый и бензолтриазол при следующем соотношении компонентов, г/л:

Силикат натрия 5-15
Гидроокись щелочного металла 2-12
Натрий ванадиевокислый 0,2-1
Бензотриазол 0,01-0,05
Вода До 1 л

Установленно, что введение в предлагаемый способ бензотриазола, образующего в процессе формирования покрытия комплексные соединения, позволяет за счет их ингибирующего действия повысить коррозионную стойкость. Проведение электрохимической обработки при заявленных соотношениях амплитуд анодного и катодного напряжения поляризации Uа/Uк, плотности тока в присутствии катионов ванадия в растворе электролита позволяет формировать композиционную гетерооксидную структуру покрытия, повышающую пожароустойчивостью. Введение гидроокиси щелочного металла, например гидроокиси калия и натрия, позволяет использовать ток меньшей плотности, что значительно снижает энергозатраты при осуществлении предлагаемого способа.

Примеры осуществления способа

Пример 1.

Электролит готовили путем последовательного растворения исходных компонентов при непрерывном перемешивании с помощью механической мешалки и выдерживали приготовленный раствор в течение 30 минут. Предварительно обработанный образец из магниевого сплава МА20 размером 25×15×2 мм (анод), помещали в приготовленный электролит, содержащий, г/л: силикат натрия (Na2SiO3·5H2O) - 15; гидроокись натрия (NaOH) - 12; натрий ванадиевокислый (NaO3V·2H2O) - 1; бензотриазол (С6H5N3) - 0,05.

Охлаждение электролита, в процессе нанесения покрытия осуществляли с помощью теплообменника, выполненного в виде змеевика из стекла и охлаждаемого проточной водой.

В качестве катода использовали пластину из нержавеющей стали, площадь которой на порядок больше обрабатываемого образца.

Образец подвергали электрохимической обработке при плотности тока 5А/дм2, соотношении анодного и катодного напряжения поляризации Ua/Uк, равном 4, промывали и подвергали сушке. Исследование защитных свойств полученного покрытия на магниевом сплаве МА20 проводили в камере солевого тумана Votsch VSC-1000 по ГОСТ9.905, ГОСТ9.308. Толщину покрытия измеряли с помощью переносного электронного толщинометра MiniTest 2100.

Для исследования воспламеняемости металлические образцы с покрытиями подвергали воздействию пламени горелки Бунзена с соплом, имеющим номинальный внутренний диаметр 9,5 мм и высоту пламени 38 мм, температура пламени в его центре составляла 800-850°С (Авиационные правила часть 25. Нормы летной годности самолетов транспортной категории. Международный Авиационный комитет. 2004 г.).

Примеры 2, 3 проводили аналогично примеру 1.

Пример 4 проводили по способу-прототипу. Электролит готовили путем последовательного растворения исходных компонентов при непрерывном перемешивании с помощью механической мешалки и выдерживали приготовленный раствор в течение 30 минут. Предварительно обработанный образец из магниевого сплава МА14 размером 30×5×1 мм (анод), помещали в приготовленный электролит, содержащий, г/л: силикат натрия (Na2SiO3·5H2O) - 30; фторид натрия (NaF) - 10.

Охлаждение электролита, в процессе нанесения покрытия, осуществляли с помощью теплообменника, выполненного в виде змеевика из стекла и охлаждаемого проточной водой.

В качестве катода использовали пластину из нержавеющей стали, площадь которого на порядок больше обрабатываемого образца.

Образец подвергали электрохимической обработке переменным током, при увеличении значения напряжения от 0 до 250-300 В со скоростью 0,25-0,28 В/с и плотности тока 0,78 А/см2=78 А/дм2 при анодной поляризации, напряжении 25-30 В при катодной поляризации изделия и соотношении периодов анодной и катодной поляризации τаk, равном 1, в течение 15 мин.

Иследование толщины покрытия, пожароустойчивости и коррозионной стойкости проводились аналогично примеру 1.

Состав электролитов, параметры процесса и свойства полученных покрытий приведены в таблице.

Из анализа таблицы видно, что коррозионная стойкость покрытия по предлагаемому способу в 1,8-2 раза выше, чем покрытия по способу-прототипу. Пожароустойчивость покрытия по предлагаемому способу в 1,7 раз выше, чем покрытия по способу-прототипу.

Применение предлагаемого способа позволит использовать изделия из деформируемых и литейных магниевых сплавов широкой номенклатуры во всеклиматических условиях, снизит энергоемкость процесса формирования покрытия.

Способ получения защитных покрытий на магниевых сплавах, включающий электрохимическую обработку с переменным током поляризации в растворе электролита, содержащем силикат натрия и воду, отличающийся тем, что электрохимическую обработку осуществляют при плотности тока 5-25 А/дм и соотношении амплитуд анодного и катодного напряжения поляризации U/U, равном 2-4, в электролите, дополнительно содержащем гидроокись щелочного металла, натрий ванадиевокислый и бензотриазол при следующем соотношении компонентов, г/л:
Источник поступления информации: Роспатент

Showing 111-120 of 251 items.
20.06.2015
№216.013.56df

Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов

Изобретение относится к способу импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов. Изобретение может быть использовано в судостроении, авиастроении, ракетостроении и других отраслях машиностроения. Формируют X-образный профиль свариваемых кромок и выполняют многопроходную...
Тип: Изобретение
Номер охранного документа: 0002553769
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56fd

Износо-коррозионностойкий медно-никелевый сплав

Изобретение относится к разработке прецизионных сплавов для микрометаллургических процессов, в том числе для получения функциональных покрытий, пленок, микропроводов, порошковых материалов, конструкционно-функциональные элементы из которых эффективно работают в жестких условиях эксплуатации,...
Тип: Изобретение
Номер охранного документа: 0002553799
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.59b5

Движительно-рулевая колонка

Изобретение относится к области судостроения и может быть использовано в конструкциях судовых движителей. Движительно-рулевая колонка содержит основание колонки, баллер, приводной вал, который расположен внутри баллера, механизм поворота колонки, угловой редуктор, обтекаемую гондолу,...
Тип: Изобретение
Номер охранного документа: 0002554506
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.63e0

Способ термической обработки поковок из высокопрочной коррозионно-стойкой стали мартенситного класса

Изобретение относится к области термообработки поковок из легированных сталей и предназначено для использования в судовом машиностроении при изготовлении гребных валов. Для получения требуемой категории прочности металла с пределом текучести не менее 800 МПа и повышения коррозионной стойкости...
Тип: Изобретение
Номер охранного документа: 0002557115
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.695b

Способ индикации летчику о положении летательного аппарата относительно заданной глиссады при заходе на посадку на корабль

Изобретение относится к способам индикации летчику положения летательного аппарата (ЛА) при посадке на корабль. Определяют взаимное положение ЛА и корабля с помощью глобальной или корабельной системы позиционирования и бортовой цифровой вычислительной машины. Формируют и отображают на...
Тип: Изобретение
Номер охранного документа: 0002558524
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.695c

Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового бпла

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит...
Тип: Изобретение
Номер охранного документа: 0002558525
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be8

Способ активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового летательного аппарата

Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние...
Тип: Изобретение
Номер охранного документа: 0002559182
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cec

Состав эпоксиполиуретанового компаунда и способ его получения

Изобретение относится к составу двухкомпонентного эпоксиполиуретанового заливочного электроизоляционного компаунда и способу его получения. Компонента «А» состоит из мономерно-олигомерной смеси полиэпоксидов, состоящей из диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А и...
Тип: Изобретение
Номер охранного документа: 0002559442
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.70e6

Способ получения многослойного материала

Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение...
Тип: Изобретение
Номер охранного документа: 0002560472
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7558

Способ получения композиционного плакированного порошка для нанесения покрытий

Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4). Неметаллическую компоненту используют с размером фракций, составляющим 1/100 размера...
Тип: Изобретение
Номер охранного документа: 0002561615
Дата охранного документа: 27.08.2015
Showing 1-8 of 8 items.
27.04.2013
№216.012.3a7d

Состав для получения защитного покрытия на стальных деталях

Изобретение относится к химической поверхностной обработке стальных деталей и может быть использовано при изготовлении валов газотурбинных двигателей, шасси вертолетов и других деталей для защиты от коррозии при эксплуатации в различных климатических условиях, в том числе при повышенных...
Тип: Изобретение
Номер охранного документа: 0002480534
Дата охранного документа: 27.04.2013
10.04.2014
№216.012.afc9

Способ нанесения защитного покрытия на стальные детали

Изобретение относится к химической поверхностной обработке стальных деталей, используемой при изготовлении изделий в авиастроении, судостроении и других отраслях. Способ включает нанесение на стальные детали первого слоя, его тепловую обработку, нанесение второго слоя, его тепловую обработку,...
Тип: Изобретение
Номер охранного документа: 0002510716
Дата охранного документа: 10.04.2014
10.04.2015
№216.013.406f

Способ получения покрытия на алюминиевых сплавах

Изобретение относится к области нанесения покрытий на алюминий или его сплавы путем плазменного электролитического оксидирования. Способ включает нанесение на алюминиевый сплав оксидного покрытия путем плазменного электролитического оксидирования в водном электролите при наложении переменного...
Тип: Изобретение
Номер охранного документа: 0002547983
Дата охранного документа: 10.04.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
27.08.2016
№216.015.4fe1

Композиционный слоистый материал с комплексной системой антикоррозионной защиты

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала с комплексной системой антикоррозионной защиты. Материал содержит чередующиеся друг с другом по меньшей мере один слой...
Тип: Изобретение
Номер охранного документа: 0002595684
Дата охранного документа: 27.08.2016
19.04.2019
№219.017.3396

Раствор для уплотнения анодно-окисного покрытия алюминиевых сплавов

Изобретение относится к области гальванотехники и может найти применение в машиностроении, авиастроении, компьютерной технике и автомобилестроении. Раствор содержит, г/л: бензотриазол 0,1-2,0; хроматциклогексиламин 0,1-2,0; натрий адипиновокислый 0,001-0,002; синтанол 0,04-0,05 и воду до 1...
Тип: Изобретение
Номер охранного документа: 0002447201
Дата охранного документа: 10.04.2012
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
+ добавить свой РИД