×
19.04.2019
219.017.3218

Результат интеллектуальной деятельности: СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать стадий, при этом на первой стадии осуществляют нагрев до температуры (Т+200÷Т+270)°C, деформацию в четыре этапа при охлаждении до температуры (Т+70÷Т-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на второй стадии - нагрев до температуры (Т+120÷Т+170)°C, деформацию в четыре этапа при охлаждении до температуры (Т-50÷Т-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на третьей стадии - нагрев до температуры (Т+20÷Т+70)°C, деформацию в четыре этапа при охлаждении до температуры (Т-70÷Т-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на четвертой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Т-100÷Т-140)°C; на пятой стадии - нагрев до температуры (Т+70÷Т+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Т-40÷Т-90)°C; на шестой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Т-60÷Т-100)°C; на седьмой стадии - нагрев до температуры (Т+20÷Т+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Т-40÷Т-70)°C; на восьмой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Т-60÷Т-100)°C; на девятой стадии - нагрев до температуры (Т+30÷Т+70)°C, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Т-70÷Т-170)°C; на десятой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Т-100÷Т-200)°C; на одиннадцатой стадии проводят нагрев до температуры (Т-70÷Т-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде; на двенадцатой стадии проводят нагрев до температуры (Т-270÷Т-470)°C с выдержкой 5-15 часов, где Т - температура полиморфного превращения; при этом с четвертой по восьмую стадию направление деформации на 90° изменяют от двух до четырех раз. Предлагаемый способ термомеханической обработки изделий обеспечивает использование титановых сплавов при низких температурах и при больших 20-30% напряжениях при двухосном растяжении и позволяет повысить надежность их в работе. 2 табл.

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов. Оно может быть использовано в цветной металлургии и авиационной технике для создания изделий в виде полуфабрикатов, лонжеронов, шпангоутов, балок, работающих в условиях двухосного растяжения и минусовых температур (до -70°C).

Известен способ термомеханической обработки изделий из титановых сплавов, включающий:

- нагрев до температуры (1050-1200)°C (Тпп+120÷Тпп+270)°C, деформацию в процессе охлаждения до 850°C (Тпп-80)°C;

- нагрев до температуры (880-1050)°C (Тпп-50÷Тпп+120)°C, охлаждение в процессе деформации до температуры 750°C (Тпп-180)°C, где Тпп=920°C (Александров В.К., Аношкин Н.Ф., Белозеров А.П. «Полуфабрикаты из титановых сплавов. М., ОНТИ ВИЛС, 1996 г., с.371).

Известен также способ термомеханической обработки, применяемый при изготовлении изделий из титановых сплавов, включающий нагрев в β-области выше температуры полиморфного превращения, деформацию в процессе охлаждения до температуры на 30-70°C ниже температуры полиморфного превращения, охлаждение, повторный нагрев в двухфазной области, повторную деформацию в этой области в процессе охлаждения, повторное охлаждение, окончательный нагрев в двухфазной области, выдержку и охлаждение, отличающийся тем, что с целью повышения механических свойств деформацию проводят в β- и (α+β)-областях с одинаковой степенью 40-60%, повторный нагрев осуществляют до температуры на 20-40°C ниже температуры полиморфного превращения, повторную деформацию проводят со степенью 25-35% при охлаждении до температуры на 100-130°C ниже температуры полиморфного превращения, повторное охлаждение после деформации осуществляют до температуры на 180-280°C ниже температуры полиморфного превращения, после чего дополнительно повторяют последний цикл нагрева и деформации в процессе охлаждения в тех же условиях, а охлаждение после деформации в этом цикле проводят до комнатной температуры, окончательный нагрев осуществляют до температуры на 100-300°C ниже температуры полиморфного превращения (а.с. СССР №1740487).

Недостатком способа является низкий уровень циклической прочности титановых сплавов при высоких концентраторах напряжения.

Наиболее близким аналогом, взятым за прототип, является способ термомеханической обработки из титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения и деформации в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в одиннадцать стадий, при этом:

на первой стадии осуществляют нагрев до температуры (Тпп+290÷Тпп+370)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+100÷Тпп-70)°C с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Tпп+180÷Tпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+50÷Тпп-90)°C с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп+80÷Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-30÷Тпп-200)°C с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на четвертой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью (15-60)%;

на пятой стадии - нагрев до температуры (Тпп+30÷Тпп+60)°C, деформацию со степенью (30-60)%;

на шестой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью (20-40)% в процессе охлаждения до температуры (Tпп-110÷Тпп-130)°C;

на седьмой стадии - нагрев до температуры (Тпп+20÷Тпп+50)°C, деформацию со степенью (30-60)% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°C;

на восьмой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью (20-60)% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°C;

на девятой стадии - нагрев до температуры (Тпп+80÷Тпп+150)°C, деформацию при прокатке со степенью (40-70)%;

на десятой стадии производят нагрев до температуры (Тпп-20÷Тпп-50)°C, деформацию при прокатке со степенью (30-60)%;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-320÷Тпп-520)°C, выдержка 2-10 ч, где Тпп - температура полиморфного превращения; при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформирования на 90° от двух до четырех раз.

С третьей по девятую стадию направление деформирования на 90° изменяют от трех до семи раз (патент РФ №2369662).

Сплав, обработанный этим способом, имеет пониженные значения прочности при двухосном растяжении и механические свойства при температуре -70°C.

Технической задачей изобретения является повышение механических свойств при рабочих температурах до -70°C, а также повышение прочности при двухосном растяжении.

Поставленная техническая задача достигается тем, что предложен способ термомеханической обработки изделий из титановых сплавов, включающий многократные нагревы до температуры выше или ниже температуры полиморфного превращения и деформации в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в двенадцать стадий при этом:

на первой стадии осуществляют нагрев до температуры (Тпп+200÷Тпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+70÷Тпп-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+120÷Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-50÷Тпп-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+20÷Тпп+70)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-70÷Tпп-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Тпп-100÷Tпп-140)°C;

на пятой стадии - нагрев до температуры (Tпп+70÷Тпп+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Тпп-40÷Тпп-90)°C;

на шестой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Тпп-60÷Тпп-100)°C;

на седьмой стадии - нагрев до температуры (Тпп+20÷Тпп+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Tпп-40÷Tпп-70)°C;

на восьмой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Tпп-60÷Tпп-100)°C;

на девятой стадии - нагрев до температуры (Tпп+30÷Tпп+70)°C, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Тпп-70÷Тпп-170)°C;

на десятой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Тпп-100÷Тпп-200)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-70÷Тпп-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде;

на двенадцатой стадии проводят нагрев до температуры (Тпп-270÷Тпп-470)°C с выдержкой 5-15 часов, где Тпп - температура полиморфного превращения;

при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформации на 90° от двух до четырех раз.

На первой стадии проводится деформация при пониженной на 100°C температуре β-области, чем у прототипа, что обеспечивает получение β-структуры с меньшим размером β-зерна.

На второй и третьей стадиях также проводятся всесторонние деформации при более низкой температуре β-области, что обеспечивает дальнейшее измельчение β-зерна и получение в результате механического перемешивания и диффузионных процессов однородной по химическому составу, макро- и микроструктуре заготовки.

Деформации в процессе охлаждения до более низкой температуры (α+β)-области на четвертой, пятой, шестой, девятой, десятой стадиях значительно уменьшают величину α-фазы и способствуют повышению уровня механических свойств.

В процессе деформации в α+β-области более интенсивная деформация проходит в зонах с меньшей величиной зерна, а при нагреве в β-области более интенсивно в этих зонах идет процесс рекристаллизации и рост зерен. В других зонах с более крупным зерном деформация идет менее интенсивно и с меньшей скоростью идет процесс рекристаллизации. Таким образом достигается однородность структурно-фазового состояния.

Следует отметить, что на пятой стадии нагрев проводится при температуре (Тпп+70÷Тпп+90)°C, что обеспечивает проведение более полной рекристаллизации, а процесс деформации заканчивается при (Тпп-40÷Тпп-90)°C. На шестой стадии деформация заканчивается при (Тпп-60÷Тпп-100)°C, на седьмой при (Тпп-40÷Тпп-70)°C и восьмой при (Тпп-60÷Тпп-100)°C.

В отличие от прототипа, на пятой и шестой стадиях деформация заканчивается в процессе охлаждения до регламентированных температур (α+β)-области, что приводит к более интенсивному измельчению внутризеренной α-структуры и уменьшению частиц α-фазы, что в свою очередь повышает эффективность упрочнения межфазовыми границами и повышает уровень прочности.

На девятой и десятой стадиях деформация в процессе охлаждения до (Tпп-70÷Tпп-170)°C и (Tпп-100÷Тпп-200)°C обеспечивает дальнейшее измельчение внутризеренной структуры и повышение ее однородности.

Таким образом происходит выравнивание структуры при пяти частичных фазовых перекристаллизациях, в процессе которых деформация проходит при значительном охлаждении до регламентированной температуры и трех полных фазовых перекристаллизациях. При этом достигается создание однородной сверхмелкозернистой структуры.

Частичная фазовая перекристаллизация значительно повышает однородность структурно-фазового состояния и уровень механических свойств. Изделия с такой структурой имеют малую глубину окисления по границам зерен, а следовательно, требуют меньшей глубины механической обработки поверхности перед деформацией на девятой и десятой стадиях.

Проведенные десять стадий термомеханической обработки обеспечивают при последующей одиннадцатой стадии термической обработке, с регламентированным временем выдержки 15-60 мин и дальнейшим охлаждением на воздухе или в воде фиксацию большого количества метастабильных β- и α''-фаз, а также α- и β-фаз переменного химического состава.

При последней двенадцатой стадии обработки (старении) происходит распад метастабильных фаз с образованием высокой дисперсности α-фазы.

Двенадцать стадий обработки обеспечивают эффективное упрочнение изделий из титановых сплавов за счет следующих двух механизмов: твердорастворного упрочнения и дисперсионного упрочнения (упрочнение межфазными границами).

Использование предлагаемого способа, включающего три стадии деформации в β-области при пониженных температурах, регламентированные охлаждения в процессе деформации с первой по десятую стадию, термическую обработку без деформации на одиннадцатой и двенадцатой стадиях, обеспечивает получение более однородного структурно-фазового состояния при большей дисперсности фрагментов структуры, что в свою очередь обеспечивает получение высоких значений прочности при двухосном растяжении (σВД) и механических свойств при температуре -70°C: предела прочности (σВ-70), относительного удлинения δ-70, относительного сужения (ψ-70), ударной вязкости (KCU).

Примеры осуществления

Были изготовлены образцы изделий из титановых сплавов, ВТ-23М и ВТ-43, обработанные предлагаемым способом термомеханической обработки и способом-прототипом, которые были подвергнуты механическим испытаниям. Результаты испытаний приведены в табл.1, 2, примеры 1-3 по предлагаемому способу, 4 - по прототипу.

Пример 1

На первой стадии осуществляли нагрев до температуры (Тпп+200)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+70)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+120)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-50)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+20)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-70)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-20)°C, деформацию со степенью 15% при охлаждении до температуры (Тпп-100)°C;

на пятой стадии - нагрев до температуры (Тпп+70)°C, деформацию с изменением направления деформирования на 90° со степенью 30% при охлаждении до температуры (Тпп-40)°C;

на шестой стадии - нагрев до температуры (Тпп-20)°C, деформацию с изменением направления деформирования на 90° со степенью 20% в процессе охлаждения до температуры (Тпп-60)°C;

на седьмой стадии - нагрев до температуры (Тпп+20)°C, деформацию со степенью 30% в процессе охлаждения до температуры (Тпп-40)°C;

на восьмой стадии - нагрев до температуры (Тпп-20)°C, деформацию со степенью 20% в процессе охлаждения до температуры (Тпп-60)°C;

на девятой стадии - нагрев до температуры (Тпп+30)°C, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-70)°C;

на десятой стадии - нагрев до температуры (Тпп-20)°C, деформацию со степенью 30% в процессе охлаждения до температуры (Тпп-100)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-70)°C с выдержкой 15 мин, охлаждение на воздухе;

на двенадцатой стадии проводят нагрев до температуры (Тпп-270)°C с выдержкой 5 часов, где Тпп - температура полиморфного превращения;

при этом с четвертой по восьмую стадию направление деформации на 90° изменяют два раза.

Пример 2

На первой стадии осуществляют нагрев до температуры (Тпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 60% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 60% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+70)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 60% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-40)°C, деформацию со степенью 60% при охлаждении до температуры (Тпп-140)°C;

на пятой стадии - нагрев до температуры (Тпп+90)°C, деформацию с изменением направления деформирования на 90° со степенью 60% при охлаждении до температуры (Тпп-90)°C;

на шестой стадии - нагрев до температуры (Тпп-40)°C, деформацию с изменением направления деформирования на 90° со степенью 40% в процессе охлаждения до температуры (Тпп-100)°C;

на седьмой стадии - нагрев до температуры (Тпп+50)°C, деформацию с изменением направления деформирования на 90° со степенью 60% в процессе охлаждения до температуры (Тпп-70)°C;

на восьмой стадии - нагрев до температуры (Тпп-40)°C, деформацию со степенью 60% в процессе охлаждения до температуры (Тпп-100)°C;

на девятой стадии - нагрев до температуры (Тпп+70)°C, деформацию со степенью 70% в процессе охлаждения до температуры (Тпп-170)°C;

на десятой стадии - нагрев до температуры (Тпп-40)°C, деформацию со степенью 50% в процессе охлаждения до температуры (Тпп-200)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-170)°C с выдержкой 60 мин, охлаждение в воде;

на двенадцатой стадии проводят нагрев до температуры (Тпп-470)°C с выдержкой 15 часов, где Тпп - температура полиморфного превращения;

при этом с четвертой по восьмую стадию направление деформации на 90° изменяют четыре раза.

Пример 3

На первой стадии осуществляют нагрев до температуры (Тпп+230)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-20)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 45% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+150)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-80)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 45% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+50)°C деформацию в четыре этапа при охлаждении до температуры (Тпп-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 45% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-30)°C, деформацию с изменением направления деформирования на 90° со степенью 30% при охлаждении до температуры (Тпп-120)°C;

на пятой стадии - нагрев до температуры (Тпп+80)°C, деформацию с изменением направления деформирования на 90° со степенью 45% при охлаждении до температуры (Тпп-70)°C;

на шестой стадии - нагрев до температуры (Тпп-30)°C, деформацию с изменением направления деформирования на 90° со степенью 30% в процессе охлаждения до температуры (Тпп-80)°C;

на седьмой стадии - нагрев до температуры (Тпп+30)°C, деформацию с изменением направления деформирования на 90° со степенью 40% в процессе охлаждения до температуры (Тпп-60)°C;

на восьмой стадии - нагрев до температуры (Тпп-30)°C, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-80)°C;

на девятой стадии - нагрев до температуры (Тпп+50)°C, деформацию со степенью 50% в процессе охлаждения до температуры (Тпп-110)°C;

на десятой стадии - нагрев до температуры (Тпп-30)°C, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-150)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-120)°C с выдержкой 45 мин, охлаждение на воздухе;

на двенадцатой стадии проводят нагрев до температуры (Тпп-370)°C с выдержкой 10 часов, где Тпп - температура полиморфного превращения;

при этом с четвертой по восьмую стадию направление деформации на 90° изменяют четыре раза.

Предлагаемый способ термомеханической обработки изделий из титановых сплавов позволяет повысить их механические свойства на 20-30%, снизить массу конструкций, работающих в условиях двухосного растяжения, и повысить их эксплуатационную надежность в условиях холода (-70°C).

Применение предлагаемого способа термомеханической обработки позволит применять сплав при низких температурах, повысить надежность работы изделий из титановых сплавов и снизить их массу на 20-30%.

Таблица 1
ВТ23М (Тпп=920°C)
σВД σВ-70 δ-70 ψ-70 KCU-70
1 1600 1490 7,8 19,5 2,6
2 1630 1500 7,4 18 2,2
3 1570 1470 8,2 22 2,7
4 1260 1100 5,3 13 1,5

Таблица 2
ВТ43 (Тпп=910°C)
σВД σВ-70 δ-70 ψ-70 KCU-70
1 1670 1550 8 22 2,7
2 1710 1560 7,5 19 2,5
3 1680 1590 8,4 25 3,1
4 1290 1140 5,6 15 1,8
σВД - прочность при двухосном растяжении.
σВ-70 - предел прочности при -70°C.
δ-70 - удлинение при -70°C.
ψ-70 - относительное сужение при -70°C.
KCU-70 - ударная вязкость на образцах с при -70°C.

Способ термомеханической обработки изделий из титановых сплавов, включающий многократные нагревы до температуры выше или ниже температуры Т полиморфного превращения и деформацию в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, а термомеханическую обработку проводят в двенадцать стадий: на первой стадии осуществляют нагрев до температуры (Т+200÷Т+270)°C, деформацию в четыре этапа при охлаждении до температуры (Т+70÷Т-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе, на второй стадии - нагрев до температуры (Т+120÷Т+170)°C, деформацию в четыре этапа при охлаждении до температуры (Т-50÷Т-110)°C с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе, на третьей стадии - нагрев до температуры (Т+20÷Т+70)°C, деформацию в четыре этапа при охлаждении до температуры (Т-70÷Т-140)°C с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе, на четвертой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Т-100÷Т-140)°C, на пятой стадии - нагрев до температуры (Т+70÷Т+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Т-40÷Т-90)°C, на шестой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Т-60÷Т-100)°C, на седьмой стадии - нагрев до температуры (Т+20÷Т+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Т-40÷Т-70)°C, на восьмой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Т-60÷Т-100)°C, на девятой стадии - нагрев до температуры (Т+30÷Т+70)°С, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Т-70÷Т-170)°C, на десятой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Т-100÷Т-200)°C; на одиннадцатой стадии проводят нагрев до температуры (Т-70÷Т-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде, на двенадцатой стадии проводят нагрев до температуры (Т-270÷Т-470)°C с выдержкой 5-15 ч, где Т - температура полиморфного превращения; при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформации на 90° от двух до четырех раз.
Источник поступления информации: Роспатент

Showing 21-30 of 251 items.
10.06.2013
№216.012.47b6

Способ снижения динамической нагруженности транспортного средства при движении по поверхности, самолет и транспортное средство, реализующие этот способ

Группа изобретений относится к способу снижения динамической нагруженности транспортного средства при движении по поверхности и транспортным средствам, реализующим этот способ. Способ заключается в том, что измеряют реакцию модели транспортного средства с разными характеристиками жесткости и...
Тип: Изобретение
Номер охранного документа: 0002483938
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.489a

Сплав на основе титана

Изобретение относится к цветной металлургии, а именно к производству титановых сплавов, и может быть использовано в конструкциях, работающих при температурах до 650°С, например для деталей корпуса и статорных лопаток компрессора высокого давления газотурбинных двигателей. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002484166
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b7d

Способ винтовой прокатки круглых профилей

Изобретение предназначено для повышения служебных характеристик изделий, изготовленных из круглого профиля из стали обычного качества и легированной, труднодеформируемых стали и сплавов, цветных металлов при использовании преимущественно в качестве исходной непрерывнолитой заготовки. Способ...
Тип: Изобретение
Номер охранного документа: 0002484907
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c19

Способ получения многофункционального покрытия на органическом стекле

Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники. Способ получения многофункционального покрытия на органическом...
Тип: Изобретение
Номер охранного документа: 0002485063
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c96

Способ получения биметаллического слитка

Изобретение относится к металлургии, конкретнее к области специальной электрометаллургии, а именно к производству биметаллических слитков с использованием электрошлаковой технологии. В способе размещают в качестве основного слоя биметаллического слитка стальную заготовку с зазором от стенки...
Тип: Изобретение
Номер охранного документа: 0002485188
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4ca7

Состав расплава на основе цинка для нанесения защитных покрытий на стальную полосу горячим погружением

Изобретение относится к области нанесения защитных металлических покрытий, в частности, к нанесению покрытий из расплава на основе цинка на стальную полосу. Расплав содержит 0,7-3,4 мас.% магния, 0,01-0,1 мас.% серебра, 0,84-4,08 мас.% алюминия, цинк - остальное. При этом содержание алюминия к...
Тип: Изобретение
Номер охранного документа: 0002485205
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4daa

Емкостный датчик давления

Изобретение относится к измерительной технике, в частности для измерения статического и динамического давления без нарушения целостности обтекания потока газа и изделий. Емкостный датчик давления состоит из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика. На...
Тип: Изобретение
Номер охранного документа: 0002485464
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4db8

Устройство для испытаний на контактную выносливость

Изобретение относится к технологии машиностроения, к устройствам для определения пластических деформаций и износа, испытаний на контактную выносливость плоских поверхностей деталей машин, изготовленных из металлических материалов. Устройство содержит привод, обкатник, сепаратор с деформирующими...
Тип: Изобретение
Номер охранного документа: 0002485478
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e36

Способ оценки звукоизоляции салона пассажирского самолета

Использование: в способах оценки звукоизоляции салона пассажирского самолета. Сущность: способ оценки звукоизоляции салона самолета в условиях полета заключается в одновременном измерении шума внутри салона с помощью акустических микрофонов или акустических антенн и измерении вибрации на...
Тип: Изобретение
Номер охранного документа: 0002485604
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5056

Способ получения керамического изделия

Изобретение относится к способам получения керамических материалов, предназначенных для высокотемпературных изделий конструкционного назначения, таких как элементы камеры сгорания и соплового аппарата газотурбинного двигателя. Способ получения керамического изделия на основе муллита,...
Тип: Изобретение
Номер охранного документа: 0002486159
Дата охранного документа: 27.06.2013
Showing 21-30 of 326 items.
10.12.2014
№216.013.0fed

Полициануратная композиция, препрег на ее основе и изделие, выполненное из него

Изобретение относится к полимерным композициям на основе циановых эфиров, упрочняемым волокнистыми наполнителями и применяемым для создания конструкционных полимерных композиционных материалов (ПКМ) с рабочей температурой до 200°C и изделий из них, которые могут быть использованы в авиационной,...
Тип: Изобретение
Номер охранного документа: 0002535494
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.101e

Способ производства пеноматериалов и конвейерная линия для его осуществления

Изобретение относится к области производства пеноматериалов на основе асбестового, базальтового, углеродного, полиэфирного или полиамидного и других видов неорганических и органических волокон, используемых в области авиа- и судостроения, машиностроении и радиотехнической промышленности....
Тип: Изобретение
Номер охранного документа: 0002535548
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1977

Магнитный материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, в частности к магнитному материалу, содержащему празеодим, железо, кобальт, бор, медь и, по меньшей мере, один элемент, выбранный из группы гадолиний (Gd), диспрозий (Dy), самарий (Sm), церий (Ce). Материал дополнительно содержит цинк...
Тип: Изобретение
Номер охранного документа: 0002537947
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.21bc

Полимерная композиция

Изобретение относится к полимерным композициям с наполнителем в виде полых микросфер. Полимерная композиция для полимерных композиционных материалов содержит олигоцианурат, полые микросферы, дополнительно содержит эпоксидный олигомер с вязкостью менее 5 Па·с при комнатной температуре, при...
Тип: Изобретение
Номер охранного документа: 0002540084
Дата охранного документа: 27.01.2015
10.03.2015
№216.013.31c1

Защитное технологическое покрытие

Изобретение относится к области производства силикатных материалов, которые могут быть использованы как защитные технологические покрытия от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей и полуфабрикатов в машиностроении и в...
Тип: Изобретение
Номер охранного документа: 0002544205
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.322c

Способ химического никелирования и раствор для его осуществления

Изобретение относится к области химической металлизации поверхности металломатричных композиционных материалов, в частности металломатричного композиционного материала алюминий-карбид кремния. Способ включает обезжиривание, первую промывку, травление, вторую промывку, химическое осаждение...
Тип: Изобретение
Номер охранного документа: 0002544319
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3f80

Связующее, способ его получения и композиционный материал, изготовленный на основе связующего

Группа изобретений относится к связующим типа фенольно-фурановых связующих, используемым для изготовления изделий общепромышленного назначения, в том числе композиционных материалов, способам получения таких связующих, а также к композиционным материалам на их основе. Связующее получено из...
Тип: Изобретение
Номер охранного документа: 0002547744
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.406b

Припой на основе свинца

Изобретение может быть использовано для изготовления припоев на основе свинца. Припой содержит компоненты в следующих соотношениях, мас.%: олово 4,0-7,0; индий 0,5-2,0; медь 0,001-0,1; сурьма 0,2-1,0; натрий 0,001-0,2; висмут 1,0-3,0; никель 0,1-0,5; церий 0,005-0,1; цинк 0,001-0,3; свинец -...
Тип: Изобретение
Номер охранного документа: 0002547979
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.406f

Способ получения покрытия на алюминиевых сплавах

Изобретение относится к области нанесения покрытий на алюминий или его сплавы путем плазменного электролитического оксидирования. Способ включает нанесение на алюминиевый сплав оксидного покрытия путем плазменного электролитического оксидирования в водном электролите при наложении переменного...
Тип: Изобретение
Номер охранного документа: 0002547983
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41ff

Способ определения прочности сцепления покрытия с кремниевой подложкой

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытий с подложкой. Способ определения прочности сцепления покрытия с кремниевой подложкой заключается в том, что покрытие с внешним серебряным слоем соединяют с деталями...
Тип: Изобретение
Номер охранного документа: 0002548393
Дата охранного документа: 20.04.2015
+ добавить свой РИД