×
19.04.2019
219.017.3188

СПОСОБ ИЗВЛЕЧЕНИЯ УРАНА ИЗ СОРБЕНТА ФТОРИДА НАТРИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано при переработке отходов, содержащих фториды урана. Сорбент фторид натрия, содержащий уран (V), обрабатывают парами воды при температуре 100-250°С. Затем извлекают уран фторированием при температуре не выше 400°С. Изобретение позволяет снизить расход фтора, предотвратить спекание сорбента. 4 табл.
Реферат Свернуть Развернуть

Изобретение относится к технологии урановых производств и, в частности, может быть использовано при переработке отходов, содержащих фториды урана.

В результате работы газоразделительного производства изотопов урана образуются газовые смеси, содержащие то или иное количество гексафторида урана. Известными способами извлечения гексафторида урана из технологических и сбросных газов являются сорбционные технологии с применением фторида натрия. В циклах сорбции-десорбции гексафторида урана на фториде натрия в последнем постепенно накапливается уран (V) в результате частичного термического разложения комплексной соли и восстановления урана:

Na2UF8→Na2UF7+0,5F2

При длительной эксплуатации в сорбенте накапливается значительное количество пятивалентного урана от 3,5 до 10 г на 1 кг сорбента за цикл, что ведет к снижению рабочей емкости сорбента по гексафториду урана.

Известны способы извлечения урана (V) из фторида натрия. Общеизвестные гидрометаллургические способы переработки веществ, содержащих фториды урана [Громов Б.В. Введение в химическую технологию урана. - М.: Атомиздат, 1978; Тураев Н.С., Жерин И.И. Химия и технология урана. - М.: Изд. Дом. «Руда и металлы», 2006], неприемлемы из-за ряда серьезных недостатков: полная потеря урана в виде гексафторида, фтора, сорбента, образование больших объемов оборотных и маточных растворов и соответствующие проблемы, связанные с очисткой и утилизацией этих растворов, и др.

Известен способ фторирования сорбента элементным фтором или трифторидом хлора. Однако даже при температурах 500-600°C достичь полноты десорбции урана не удается. Кроме того, при таких температурах сорбент спекается и практически теряет способность сорбировать UF6 и требует замены [Громов О.Б., Сергеев Г.С., Евсеев В.А. и др. Отчет «Анализ существующих способов извлечения недесорбируемого остатка урана из отработавшего фторида натрия». - М.: ОАО «ВНИИХТ», ТИ-2381, 2000].

Известен способ [Галкин Н.П., Зайцев В.А. и Серегин М.Б. Улавливание и переработка фторсодержащих газов. - М.: Атомиздат, 1975, с.90], принятый за прототип, извлечения урана из комплексной соли Na2UF7. Способ заключается во фторировании соли элементным фтором при давлении до 1 атм и температуре 300-450°С. Недостатками способа являются спекание фторида натрия при температуре выше 400°С, и, следовательно, снижение его сорбционных характеристик [Галкин Н.П., Зайцев В.А. и Серегин М.Б. Улавливание и переработка фторсодержащих газов. - М.: Атомиздат, 1975, с.121], и низкая скорость реакции фторирования при температуре 300°С и ниже, а также значительный расход фтора, равный до 40 г на 1 кг фторида натрия. Степень извлечения урана из фторида натрия не превышает 80%. Кроме того, извлечение из сорбционного аппарата спеченного сорбента является достаточно трудоемкой операцией.

Технический результат предлагаемого способа извлечения урана из фторида натрия заключается в том, чтобы предотвратить спекание сорбента.

Технический результат предлагаемого изобретения достигается тем, что в способе извлечения урана в виде гексафторида урана из сорбента фторида натрия перед фторированием сорбент, содержащий уран (V), обрабатывают парами воды при температуре 100-250°С. Фторирование проводят при температуре не выше 400°С.

В результате проведенных нами исследований было показано, что при обработке фторида натрия, содержащего пятивалентный уран, паром воды в интервале температуры от 100 до 250°С диспропорционирование урана (V) на уран (IV) и уран (VI) протекает за сравнительно короткое время (от секунд до долей секунды), которое зависит от скорости диффузии молекул воды в частицах фторида натрия:

2Na2UF7+2H2O=Nа2UF6+Na2UO2F4+4HF

Косвенное термодинамическое обоснование происходящих в системе процессов можно получить лишь по реакциям фторирования индивидуальных фторидов урана вследствие практического отсутствия аналогичных данных по комплексным фторидам натрия и урана. Фторирование фторидов урана в степенях окисления +4 (тетрафторид) и +6 (оксифторид) происходит с гораздо большей легкостью, нежели фторирование пентафторида урана (см. табл.1) [Чижевский С. В., Селезнев В.П. и Ягодин Г.А. «Взаимодействие урансодержащих соединений щелочных металлов с элементарным фтором», 5-й Всесоюзный симпозиум по химии неорганических фторидов. Тезисы докладов. Днепропетровск, 27-30 июня 1978 г. - М.: Наука, 1978, с.290; Морачевский А.Г., Сладков И.Б. Физико-химические свойства молекулярных неорганических соединений. - Л.: Химия, 1987].

Таблица 1
Вероятность протекания реакций фторирования фторидов урана
Реакция -ΔG°298, ккал/моль lgKp, 298 -ΔG°673, ккал/моль lgKp, 673
UF5+0,5F2=UF6 31,0 22,7 25,5 8,3
UF4+F2=UF6 53,7 39,4 42,5 13,8
UO2F2+2F2=UF6+O2 120,3 88,2 128,6 41,7

Сорбент, содержащий U5+, обрабатывали при 120°С парами воды, содержание которых в газе составляло 2,3-47,0 об.%. После этого NaF фторировали фтором при 400°С и давлении 120 мм рт.ст. в течение 0,5-4 ч. В табл.2 представлены результаты обработки NaF, содержащего U5+, после гидролиза и фторирования. Исходное содержание урана (V) в сорбенте составляло 0,92-3,08 мас.%.

Таблица 2
Содержание урана после первичной паровоздушной обработки
№ пп [H2O], об.% Время обработки, мин Содержание урана, масс.% (после фторирования в течение 1 часов)
0,5 1 2 4
1 2,3 1 0,34 0,29 0,24 0,22
2 2,3 2 0,34 0,21 0,17 0,15
3 2,3 5 0,25 0,20 0,17 0,14
4 7,4 1 0,24 0,20 0,17 0,13
5 7,4 2 0,24 0,19 0,17 0,14
6 7,4 5 9,22 0,17 0,16 0,14
7 19,8 1 0,22 0,19 0,17 0,14
8 19,8 2 0,21 0,18 0,16 0,14
9 19,8 5 0,19 0,17 0,14 0,13
10 47,0 1 0,19 0,17 0,14 0,13
11 47,0 2 0,19 0,17 0,14 0,13

Степень извлечения урана составляла не более 93%.

Недостаточная степень десорбции урана после гидролиза и последующего фторирования обуславливается протеканием противоположных процессов - десорбция UF6 и восстановление урана. Поэтому система вновь содержит уран в восстановленной форме, а сорбент, содержащий не менее 0,13 мас.% урана, продолжает квалифицироваться радиационным материалом. Для достижения требуемой величины содержания урана в сорбенте, равной не более 0,1 мас.%, потребовалось провести повторный цикл гидролиза при температуре 220°C и фторирования сорбента при 400°C (см. табл.3).

Таблица 3
Содержание урана после вторичной паровоздушной обработки
№ пп [H2O], об.% Время обработки, мин Содержание урана, мас.% (после фторирования в течение 1 часов)
0,5 1 2 4
1 7,4 1 0,15 0,12 0,09 0,09
2 7,4 2 0,11 0,08 0,08 0,07
3 7,4 4 0,10 0,09 0,08 0,07
4 19,8 1 0,10 0,09 0,07 0,06
5 19,8 2 0,10 0,08 0,07 0,06
6 19,8 4 0,09 0,07 0,05 0,05

Как следует из данных табл.1 и 2, суммарная степень извлечения урана из NaF после двукратного цикла «гидролиз-фторирование» достигает 97,3%, при этом содержание урана в сорбенте находится на уровне не более 0,1 мас.%.

Необходимо отметить, что после проведения указанных выше операций сорбент фторид натрия не снизил свои сорбционные характеристики по отношению к гексафториду урана.

Обработка комплексной соли, содержащей пятивалентный уран, при температуре ниже 100°C ведет к существенному уменьшению скорости реакции диспропорционирования и вероятной конденсации воды в порах сорбента, что может привести к взрыву при последующем фторировании. При обработке при температуре выше 250°C будет наблюдаться процесс пирогидролиза UF4 до UO2 и, как следствие этого, будут увеличиваться расходные характеристики фторирующего реагента.

Пример 1

Содержание урана в порошкообразном фториде натрия, проработавшего в течение 2,5 лет в циклах сорбции-десорбции гексафторида урана в процессе переработки газовых смесей, содержащих трифторид хлора, составляло 20,9 мас.%. Весь уран находился в пятивалентном состоянии.

Навеску соли массой 15,0 г помещали в реактор, нагревали до 120°C и обрабатывали парами воды с расходом 1 мл/см2·с в течение трех минут. После этого производили вакуумную откачку реактора и производили фторирование соли при 380°C элементным фтором в течение двух часов. После химического анализа содержание урана в сорбенте оказалось равным 0,29 мас.%.

Операцию гидролиза и фторирования сорбента при 220°C и тех же прочих условиях повторили. Содержание урана в сорбенте стало равным 0,09 мас.%.

Сорбент после фторирования обработали газом, содержащим UF6. Была достигнута емкость фторида натрия, равная 4,4 г UF6/г NaF.

Пример 2

20 кг фторида натрия, который проработал 45 циклов сорбции-десорбции, содержащий 42,4 мас.% урана (V), был обработан в течение 5 мин паром воды при температуре 230±20°C. Затем соль фторировали в течение одного часа при температуре 380°С и давлении фтора 300±20 мм рт.ст. Масса сконденсированного UF6 при температуре - 60°C составила 12,5 кг (выход 99,6%). Остаточное содержание урана в сорбенте оказалось равным 0,21 мас.%. При повторной обработке содержание урана снизилось до 0,11 мас.%.

Пример 3

Сорбент по примеру 2, но без операции гидролиза. Остаточное содержание урана в сорбенте составило 7,8 мас.% после фторирования элементным фтором при давлении 740 мм рт.ст.

Пример 4

В табл.4 представлены условия и результаты извлечения недесорбируемого остатка урана из гранулированного фторида натрия, используемого на сорбционной установке на Заводе разделения изотопов ОАО «Сибирский химический комбинат».

Необходимость проведения двукратной паровоздушной обработки отработавшего NaF обуславливается, прежде всего, тем, что при гидролизе связанного пентафторида урана имеет место явления закупоривания пор сорбента продуктами гидролиза, которые препятствуют проникновению внутрь гранул паров воды.

Таблица 4
Результаты извлечения недесорбируемого остатка урана
Параметр Численная величина
Диаметр гранул сорбента 2-6 мм
Содержание урана:
Uобщ 2,54 мас.%
U5+ 2,52 мас.%
U4+ 1,26 мас.%
U6+ 1,28 мас.%
Отношение Uобщ/U4+ 2,02
Расход газовой смеси 1,43 нл/мин
Первичная паровоздушная обработка
Содержание паров воды в воздухе 7,4 об.%
Продолжительность обработки 2 мин
Температура паровоздушной обработки 180±10°C
Температура фторирования фтором 380±10°C
Давление фтора 120 мм рт.ст.
Продолжительность фторирования 2 ч
Содержание Uобщ после десорбции 0,18 мас.%
Вторичная паровоздушная обработка
(условия те же)
Содержание Uобщ после десорбции 0,08 мас.%

По сравнению со способом-прототипом данное техническое решение обладает следующими преимуществами:

- не происходит спекание сорбента;

- сорбент можно использовать неограниченное время без замены;

- существенно снижается расход энергетических и материальных ресурсов вследствие использования более низких температур, значительного сокращения продолжительности процесса;

- резко снижается расход элементного фтора.

При внедрении изобретения в производство могут быть достигнуты следующие экономические факторы:

- отпадает необходимость строительства участков разгрузки и регенерации отработавшего сорбента, рекуперации урана;

- резко сократится потребность во фториде натрия;

- снижаются энергетические и материальные затраты на регенерацию сорбента;

- исключается ручной труд при замене сорбента.

При применении данного изобретения в промышленности не потребуется разработки специального оборудования и аппаратов.

Способ извлечения урана в виде гексафторида урана из сорбента фторида натрия фторированием при повышенной температуре, отличающийся тем, что перед фторированием сорбент, содержащий уран (V), обрабатывают парами воды при температуре 100-250°С, а фторирование проводят при температуре не выше 400°С.
Источник поступления информации: Роспатент

Showing 1-5 of 5 items.
10.09.2015
№216.013.7aa5

Способ изготовления тонкостенной ячеистой структуры с плоскими поверхностями из углеродной ткани

Способ по изобретению заключается в создании прочных тонких, механических поддерживающих структур для электромагнитного калориметра. Такими структурами являются ячеистые структуры из пропитанной эпоксидным связующим ткани из углеродного волокна. Техническим результатом, достигаемым при...
Тип: Изобретение
Номер охранного документа: 0002562986
Дата охранного документа: 10.09.2015
12.01.2017
№217.015.591f

Фотоумножитель с большой площадью фотокатода

Фотоумножитель может быть использован для регистрации слабых световых сигналов в исследованиях по физике высоких энергий, ядерной физике, в других различных технических приложениях, в том числе и для наблюдения крайне слабых световых сигналов. Конструкция фотоумножителя состоит из...
Тип: Изобретение
Номер охранного документа: 0002588047
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.79f7

Тонкий сцинтилляционный счётчик

Изобретение относится к области детектирования слабых радиационных сигналов с помощью сцинтилляционных счетчиков и может быть преимущественно использовано в детекторах обнаружения бета-загрязнений. Тонкий сцинтилляционный счетчик для обнаружения бета загрязнений содержит протяженную...
Тип: Изобретение
Номер охранного документа: 0002599286
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.a4a2

Способ изготовления пластмассовых сцинтилляторов на основе полистирольных гранул

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для изготовления недорогих сцинтилляционных детекторов в самом широком диапазоне габаритных размеров и толщин. Заявлен способ изготовления пластмассовых сцинтилляторов на основе полистирольных гранул,...
Тип: Изобретение
Номер охранного документа: 0002607518
Дата охранного документа: 10.01.2017
19.04.2019
№219.017.3184

Способ очистки тетрафторида кремния от примеси летучих фторидов фосфора

Изобретение может быть использовано в производстве поликристаллического кремния. Осуществляют совместную сорбцию тетрафторида кремния и летучих фторидов фосфора на фториде натрия при температуре 200-250°С. Вводят водяной пар при температуре 450-550°С, десорбируют и конденсируют очищенный...
Тип: Изобретение
Номер охранного документа: 0002422359
Дата охранного документа: 27.06.2011
Showing 1-10 of 26 items.
27.11.2014
№216.013.0b1c

Способ очистки фтористого водорода

Изобретение может быть использовано в неорганической химии. Способ очистки фтористого водорода от фторидов кремния и фосфора включает пропускание газовой смеси, содержащей фториды водорода, кремния, фосфора, через фторид натрия. Смесь контактируют с фторидом натрия при температуре 20-40°С и...
Тип: Изобретение
Номер охранного документа: 0002534252
Дата охранного документа: 27.11.2014
20.02.2015
№216.013.2a4d

Способ очистки тетрафторида урана

Изобретение относится к технологии получения соединений урана и, в частности к очистке тетрафторида урана от соединений углерода, фосфора, азота и других примесей. Способ очистки тетрафторида урана от примесей летучих фторидов заключается в термообработке тетрафторида урана при...
Тип: Изобретение
Номер охранного документа: 0002542286
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a4f

Способ получения тетрафторида кремния

Изобретение может быть использовано для утилизации продуктов переработки отвального гексафторида урана и получения особо чистого кремния. Реакционную смесь, содержащую тетрафторид урана и двуокись кремния в мольном соотношении (1,007-1,015):1, соответственно, подвергают механохимической...
Тип: Изобретение
Номер охранного документа: 0002542288
Дата охранного документа: 20.02.2015
27.11.2015
№216.013.9394

Способ получения тетрафторида урана

Изобретение относится к неорганической химии урана, в частности к технологии получения тетрафторида урана. Способ получения тетрафторида урана заключается в осаждении его из растворов, содержащих хлоридно-фторидный комплекс U, фтористоводородной кислотой, при температуре процесса 70-80°C, при...
Тип: Изобретение
Номер охранного документа: 0002569399
Дата охранного документа: 27.11.2015
27.03.2016
№216.014.db5f

Способ очистки металлических поверхностей от отложений урана

Изобретение относится к технологии урана, применительно к эксплуатации производств по разделению изотопов урана, и может быть использовано для очистки различных металлических поверхностей, работающих в среде гексафторида урана, от нелетучих отложений урана. Способ очистки металлических...
Тип: Изобретение
Номер охранного документа: 0002579055
Дата охранного документа: 27.03.2016
26.08.2017
№217.015.e281

Способ конверсии обедненного гексафторида урана водяным паром

Изобретение относится к технологии переработки обедненного гексафторида урана и может быть использовано для получения закиси-окиси урана и безводного фтористого водорода. Способ конверсии обедненного гексафторида урана водяным паром включает двухстадийное взаимодействие гексафторида урана с...
Тип: Изобретение
Номер охранного документа: 0002625979
Дата охранного документа: 20.07.2017
26.08.2017
№217.015.e869

Способ инактивации примесей в сорбенте фторид лития

Изобретение относится к процессам, применяемым для разделения фторидных газов. Для инактивации примесей фторидов щелочных и/или щелочноземельных металлов в сорбенте- фториде лития сорбент обрабатывают тетрафторидом кремния, полученным термическим разложением гексафторосиликата лития при...
Тип: Изобретение
Номер охранного документа: 0002627427
Дата охранного документа: 08.08.2017
29.12.2017
№217.015.fc66

Способ разделения изотопов урана

Изобретение относится к неорганической химии и физике разделения веществ, в частности к технологии производства фторидных соединений урана и разделению его изотопов. Способ разделения изотопов урана включает контактирование гексафторида урана и фторида натрия до получения фтороураната натрия...
Тип: Изобретение
Номер охранного документа: 0002638384
Дата охранного документа: 13.12.2017
29.12.2017
№217.015.fd14

Способ получения гексафторида урана

Изобретение относится к производствам атомной промышленности, в частности к процессу выделения гексафторида урана из газов после фторирования урансодержащих соединений на сублиматных заводах. Способ получения гексафторида урана включает охлаждение полых металлических цилиндров, путем подачи...
Тип: Изобретение
Номер охранного документа: 0002638215
Дата охранного документа: 12.12.2017
16.06.2018
№218.016.6294

Комплекс для моделирования химико-технологических процессов

Комплекс для моделирования химико-технологических процессов содержит задающее устройство, вычитатель, блок оптимизации, блок управления, матрицу фильтров, два преобразующих модуля, датчики температуры, давления и расхода технологической жидкости, электрореле, электродвигатель, соединенные...
Тип: Изобретение
Номер охранного документа: 0002657711
Дата охранного документа: 14.06.2018
+ добавить свой РИД