×
19.04.2019
219.017.2ebd

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ЦИНКОВЫХ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий. Способ включает электролитическое натирание поверхности анодом, к которому подводят электролит, в качестве анода используют гранулы цинка, размещенные в пористой оболочке, которую заполняют электролитом, который содержит, г/л: цинк сернокислый 350-600, натрий сернокислый 40-100, кислоту борную 20-30, ПАВ 0,5-5,0, нанопорошок оксида алюминия или оксида циркония 0,5-50. Технический результат: способ позволяет получать полублестящие покрытия с повышенной микротвердостью, коррозионной стойкостью при высокой скорости осаждения, а также позволяет снизить материальные и энергетические затраты при ремонте цинковых покрытий до 25%. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий. Изобретение может найти применение в различных областях промышленности для защиты стальных деталей от коррозии и ремонта покрытий без демонтажа узлов и агрегатов, а также для защиты отдельных участков крупногабаритных изделий.

Известны способы локального нанесения покрытий электронатиранием, в частности цинком из электролита: Zn(CN)2 - 60-75 г/л, NaCN - 38-45 г/л, NaOH 75-110 г/л (Мельников П.С. Справочник по гальванопокрытиям в машиностроении. 2-е изд., перераб. и доп. М.: Машиностроение, 1991, стр.94-96).

Недостатком предложенного способа является высокая токсичность цианистых электролитов, что в связи с ужесточением требований к охране здоровья и природоохранного законодательства привело к всеобщему отказу от этих электролитов.

Известен способ нанесения покрытий натиранием цинком, кадмием, медью и др. с высокой скоростью осаждения 50-60 мкм/мин, где для покрытия электронатиранием больших поверхностей применяют специальную щетку, рабочая часть которой состоит из пучка полимерных нитей, закрепленных на спирально свернутой металлической ленте (Справочник «Защита от коррозии, старения и биоповреждений машин, оборудования и сооружений» под ред. А.А.Герасименко, том 2. М.: Машиностроение 1987, стр.IХ-702÷IХ-706).

Недостатком этого способа является то, что при повышенной скорости осаждения наблюдается неравномерность и растрескивание покрытия.

Известен способ восстановления гальванических покрытий на деталях с поверхностными дефектами, заключающийся в том, что осаждаемый материал наносят только на локальные участки детали по поверхностям дефектов за счет возвратно-поступательного перемещения анода-инструмента относительно детали (заявка РФ №2006115210).

Недостатком использования этого способа является то, что возможность придания аноду формы профиля поперечного сечения достигается только путем усиления прижима, что может привести к местным пригарам покрытия.

Известен способ электроосаждения цинка в электролите, содержащем сульфат цинка, сульфат алюминия, сульфат натрия, в который дополнительно вводят бутиндиол 1,4 (35% раствор) (патент РФ №2205901).

Недостатком данного способа является низкая скорость осаждения при электронатирании, малая прочность сцепления и недостаточные защитные свойства, вызываемые высокой пористостью.

Известен способ электролитического нанесения цинкового покрытия из электролита, содержащего цинк хлористый, алюминий хлористый, соли никеля, кобальта и железа, а также нанопорошки оксидов металлов групп IIIA, IVB, VB, VIB или карбидов металлов групп IVB, VB, VIB, ПАВ ОС-20 в количестве 0,01-0,1 г/л (патент РФ №2301289).

Недостатком данного способа является невозможность получения высокой скорости осаждения при заданной концентрации ионов цинка, что необходимо для локальных методов электронатирания.

Широкое применение нашли способы восстановления изношенных внутренних поверхностей деталей путем электрохимического натирания с компенсацией растворения анодных пластин (патенты РФ №2198965, №2063484).

Недостаток данных технических решений - ограниченное применение для ремонта только внутренних поверхностей.

Известны способы и устройства локального нанесения металлов и сплавов натиранием, предлагаемые фирмой SIFKO SELECTIVE PLATING. (патенты США №5002649, №5409593, Канады №1160986).

Использование передовых ремонтных технологий сопровождается применением сложных устройств для обеспечения герметичности камеры нанесения покрытия и для подключения энергопитания.

За прототип принят наиболее близкий по технической сущности к заявленному способ нанесения цинковых покрытий, включающий электролитическое натирание обрабатываемой поверхности вращающимся вокруг оси цилиндрическим инструментом, на боковой поверхности которого с равномерным шагом расположены электроды, выполненные в виде секторов из пористого материала, к которым радиально подводят электролит следующего состава: окись цинка - 10 г/л, едкий натр - 152 г/л, вода дистиллированная - 1 л. Режимы осаждения покрытий: температура электролита 30±5°С, плотность тока 2 А/дм2, скорость подачи электролита 2 см3/см2·мин (патент РФ №2078856).

Недостатком данного изобретения является то, что для восстановления и упрочнения внутренних поверхностей деталей нанесение цинкового покрытия осуществляют вращающимся инструментом с секторами из растворимых цинковых анодов, которые будут интенсивно растворяться и изменять свои геометрические параметры, что приведет соответственно к увеличению материальных затрат и себестоимости ремонта. Кроме того, при локальном нанесении цинкового покрытия из щелочных (цинкатных) электролитов при катодной плотности тока 2 А/дм2 скорость осаждения не может превышать (1,5-2) мкм/мин, что затрудняет получение цинковых покрытий толщиной (30-50) мкм, необходимых при ремонтной технологии. Повышенная температура электролита и относительно невысокая скорость его подачи предполагает дополнительные энергозатраты и увеличивает себестоимость покрытия.

Технической задачей предлагаемого изобретения является разработка способа получения цинкового покрытия методом электронатирания, сочетающего высокую скорость осаждения, равномерность покрытия, высокую прочность сцепления, низкую пористость с высокими защитными свойствами покрытия в коррозионных средах, а также исключение пассивации анода при высоких плотностях анодного тока.

Для решения поставленной задачи предложен способ нанесения цинковых покрытий, включающий электролитическое натирание обрабатываемой поверхности анодом, к которому подводят электролит, содержащий ионы цинка и натрия, отличающийся тем, что в качестве анода используют гранулы цинка, размещенные в пористой оболочке, которую заполняют электролитом, а в электролит дополнительно вводят борную кислоту, поверхностно-активное вещество и нанопорошок оксида алюминия или оксида циркония при следующем соотношении компонентов (г/л):

цинк сернокислый 350-600
натрий сернокислый 40-100
кислота борная 20-30
ПАВ 0,5-5,0
нанопорошок оксида алюминия
или оксида циркония 0,5-50

В качестве поверхностно-активного вещества используют полиоксиэтиленалкиловые эфиры CnH2n+1O(C2H4O)mH, где n=8-18, m=20.

Нанесение цинковых покрытий осуществляется при комнатной температуре, плотности тока не менее 10 А/дм и скорости подачи электролита 5-30 см3/см2·мин.

Получение высокой скорости осаждения покрытия обеспечивается использованием электролита с повышенной концентрацией основного компонента (сульфата цинка) и стабильным значением электропроводности, которое достигается введением в раствор натрия сернокислого. Увеличение концентрации сернокислого цинка в электролите позволяет получить равномерные плотные осадки со скоростью осаждения 8-10 мкм/мин. Борная кислота используется как реагент, обеспечивающий буферную емкость электролита.

Поверхностно-активное вещество (ПАВ) полиоксиэтиленалкиловые эфиры CnH2n+1O(C2H4O)mH, где n=8-18, m=20 вводится в электролит с целью повышения седиментационной устойчивости суспензии.

Введение в электролит нанопорошка оксида алюминия или оксида циркония направлено на изменение механизма осаждения осадка и оказывает существенное влияние на морфологию и дисперсность цинкового покрытия. Нанопорошки с адсорбированными ионами цинка переносятся движением жидкости и электрическими полями к поверхности осаждения гальванического покрытия и участвуют в процессах формирования структуры покрытия, т.е. наночастицы оксида алюминия или оксида циркония являются средством по переносу ионов цинка к поверхности катода и влияют на продолжительность переходных процессов, происходящих на границе катод-электролит. Нанопорошок оксида алюминия или оксида циркония используют с дисперсностью частиц (10-100) нм и удельной поверхностью (15-50) м2/г.

Кроме того, функциональная роль оксида алюминия или оксида циркония заключается в том, что наночастицы оксида алюминия или оксида циркония, обладая высокой скоростью броуновского движения (~0,3 м/с), пробивают прикатодный слой и участвуют в депассивации поверхности катода за счет энергетического воздействия частиц. Активация поверхности катода повышает скорость электрохимических процессов разряда катионов, что приводит к увеличению рассеивающей способности электролита и выхода цинка по току.

Использование нанопорошка оксида алюминия или оксида циркония в составе электролита цинкования обеспечивает формирование мелкокристаллической структуры покрытия, что приводит к повышению микротвердости цинкового покрытия на 20%. Малые размеры наночастиц оксидов алюминия или циркония и кристаллитов цинка обеспечивают точное копирование покрытием микрорельефа поверхности, что увеличивает общую поверхность сцепления и соответственно повышает адгезионную прочность покрытия с основой. Добавка наночастиц оксида алюминия или оксида циркония приводит к уменьшению величины шероховатости поверхности и придает дополнительный блеск металлической поверхности.

Использование гранул цинка в качестве анода («гранулированный» анод) позволяет увеличивать поверхность анода и тем самым уменьшить плотность анодного тока. Это, в свою очередь, приводит к увеличению скорости растворения анода и к возрастанию потока ионов цинка от анода к катоду, то есть создает условия для увеличения скорости осаждения до 10 мкм/мин, что в 5-8 раз повышает производительность труда и снижает себестоимость гальванического процесса. Гранулы цинка, расположенные в пористой токонепроводящей перегородке, плотно облегают поверхность осаждения.

Примеры осуществления.

Пример 1

Образцы из стали 30ХГСА подключали в качестве катода к источнику питания и располагали на поддоне для сбора стекающего электролита. Анод, содержащий гранулы цинка (произвольной формы размером до 20 мм) внутри пористой оболочки, заполняли электролитом предлагаемого состава. Затем анод подводили к поверхности детали (катоду). При этом образовывалась замкнутая электрическая цепь, в которой величины тока и напряжения заданы. Пористая оболочка, заполненная электролитом, скользила по поверхности детали, и одновременно в ней протекала электрохимическая реакция на катоде. Осаждение цинкового покрытия проводили при следующих режимах: температура электролита (22-25)°С, плотность тока 10 А/дм2, скорость подачи электролита 30 см3/см2·мин.

Составы электролитов, режимы осаждения цинкового покрытия методом натирания и свойства покрытия представлены в таблице.

Примеры 2, 3 аналогичны 1, но с изменением концентраций компонентов электролита, плотности тока и скорости подачи электролита. Осаждение покрытия проводили при среднем и максимальном количестве веществ в электролите, продолжительность электролиза 5 мин.

Пример 4 - прототип

Цинковое покрытие нанесено на стальные образцы из щелочного электролита, представленного в прототипе, при следующих режимах осаждения: температура электролита (30±5)°С, плотность тока 2 А/дм2, скорость подачи электролита 2 см3/см2·мин.

Проведены сравнительные испытания цинкового покрытия, полученного по примерам 1-4, на коррозионную стойкость (защитные свойства), определена скорость осаждения, прочность сцепления, микротвердость и пористость покрытия.

Прочность сцепления покрытия (адгезию) оценивали согласно ГОСТ 9.302-88 методом нагрева и нанесения сетки царапин, защитные свойства цинкового покрытия исследовали методом ускоренных коррозионных испытаний в камере солевого тумана КСТ-35 по ГОСТ 9.308-85. Контроль шероховатости проводили профилометром модели 283 по ГОСТ 2789. Микротвердость покрытия измеряли с помощью микротвердомера ПМТ-3М по ГОСТ 9450 при нагрузке 100 г.

Как видно из данных таблицы, предлагаемый способ электролитического нанесения цинковых покрытий методом натирания позволяет значительно повысить скорость осаждения покрытия. Сравнительный анализ приведенных в таблице результатов исследований показывает, что натирание в электролите цинкования предлагаемого состава обеспечивает значительное увеличение скорости осаждения (в 5-8 раз) по сравнению с цинкованием в электролите, принятом за прототип. Следует также отметить высокие защитные свойства цинковых покрытий - время выдержки в камере солевого тумана (образцы сняты с испытаний при обнаружении 20% коррозии поверхности) составляет 1150-1270 ч. Микротвердость покрытий, осажденных в электролитах (1-3), на 20% выше по сравнению с осадками, полученными в электролите, выбранном в качестве прототипа. Представленные в таблице значения параметров шероховатости поверхности после нанесения цинкового покрытия в электролитах (1-3) свидетельствуют о том, что предложенный способ нанесения цинкового покрытия обеспечивает значительное повышение класса чистоты поверхности за счет действия так называемого выравнивающего эффекта. При цинковании предложенным способом в электролитах (1-3) параметр шероховатости снижается с Ra(исх)=0,5 до Ra=0,125, тогда как при осаждении в электролите-прототите параметр шероховатости увеличивается с Rа(исх)=0,5 до Ra=0,63-1,25.

Таким образом, предлагаемый электрохимический способ нанесения цинковых покрытий на металлические изделия методом натирания с использованием засыпных анодов из гранул цинка произвольной формы размером до 20 мм позволяет получать покрытия с новым уровнем свойств: блестящие (полублестящие) покрытия с повышенной микротвердостью, коррозионной стойкостью - при высокой скорости осаждения. Это приведет к снижению материальных и энергетических затрат при ремонте цинковых покрытий до 25%, повысит производительность труда и расширит область применения представленной ремонтной технологии цинкования.

Таблица
Условия электроосаждения Примеры осуществления
1 2 3 4 прототип
Состав электролита, г/л Цинк сернокислый 350 450 600 -
Натрий сернокислый 40 70 100 -
Кислота борная 20 25 30 -
Нанопорошок 0,5 (Al2O3) 30 (ZrO2) 50 (ZrO2) -
ПАВ 0,5 (ОС-20) 2,5 (ДС-10) 5,0 (OC-20) -
Окись цинка - - - 10
Едкий натр - - - 150
Режимы осаждения Температура, °С 25 25 25 30
Плотность тока, А/дм2 15 12 10 2
Скорость подача электролита, см3/см2·мин 30 20 5 2
Результаты Скорость осаждения, мкм/мин 6,0 7,5 10,0 1,25
Параметр шероховатости Ra, мкм 0,32 0,20 0,125 0,63-1,25
Защитные свойства (ч) 1150 1270 1270 600
Прочность сцепления по ГОСТ 9.302-88 Вздутий и отслаиваний не обнаружено
Микротвердость (МПа) 480 500 520 450

Источник поступления информации: Роспатент

Showing 81-90 of 354 items.
10.12.2015
№216.013.97c1

Способ соединения слоистого алюмостеклопластика

Изобретение относится к слоистым композиционным материалам для использования в авиационной и машиностроительной промышленности и касается способа соединения слоистого алюмостеклопластика. Укладывают по меньшей мере два металлических слоя, каждый из которых состоит из отдельных уложенных встык...
Тип: Изобретение
Номер охранного документа: 0002570469
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9c70

Способ изготовления ротора турбины из никелевого жаропрочного сплава

Изобретение относится к области изготовления ротора турбины газотурбинного двигателя, состоящего из двух и более деталей, изготовленных преимущественно из никелевого жаропрочного сплава с применением электронно-лучевой сварки. Способ включает получение по меньшей мере двух заготовок компонентов...
Тип: Изобретение
Номер охранного документа: 0002571673
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9c71

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей ротора, работающих при температурах до 900°C. Сплав...
Тип: Изобретение
Номер охранного документа: 0002571674
Дата охранного документа: 20.12.2015
27.12.2016
№216.013.9dfd

Способ нанесения межкристаллитных коррозионных поражений на алюмиевые сплавы

Изобретение относится к области проведения коррозионных испытаний алюминиевых сплавов. Способ нанесения межкристаллитных коррозионных поражений на деталь из алюминиевого сплава, в котором деталь обрабатывают путем наложения на нее анодного тока в водном электролите, содержащем хлорид натрия....
Тип: Изобретение
Номер охранного документа: 0002572075
Дата охранного документа: 27.12.2015
27.12.2016
№216.013.9e27

Способ получения суперсплавов на основе никеля, легированных редкоземельными металлами

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, легированных редкоземельными металлами. Способ получения сплава на основе никеля включает загрузку в плавильный тигель шихты в виде металлических отходов или смеси металлических отходов и...
Тип: Изобретение
Номер охранного документа: 0002572117
Дата охранного документа: 27.12.2015
27.12.2016
№216.013.9e3d

Способ получения углепластиков на основе термостойкого связующего

Изобретение относится к технологиям изготовления углепластиков на основе углеродных наполнителей и термостойких связующих и может быть применимо при изготовлении элементов рабочего колеса центробежного компрессора. Описан способ получения углепластика на основе термостойкого связующего, в...
Тип: Изобретение
Номер охранного документа: 0002572139
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9ea8

Звукопоглощающий материал и конструктивные элементы двигателя и мотогондолы двигателя, выполненные из него

Изобретение относится к области звукопоглощающих полимерных композиционных материалов, предназначенных для использования преимущественно в двигателях и мотогондолах двигателей. Звукопоглощающий материал включает слой ячеистой структуры и звукопоглощающий наполнитель, пропитанный раствором...
Тип: Изобретение
Номер охранного документа: 0002572253
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.9fc3

Композиционный вибропоглощающий материал

Изобретение относится к авиакосмической промышленности и может быть использовано в бортовой звукотеплоизолирующей конструкции пассажирских самолетов и касается композиционного вибропоглощающего материала. Материал содержит: армирующий металлический слой, полимерные вибропоглощающий слой,...
Тип: Изобретение
Номер охранного документа: 0002572541
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a143

Способ термической обработки отливок из жаропрочных никелевых сплавов

Изобретение относится к области металлургии, а именно к термической обработке отливок из жаропрочных никелевых сплавов, предназначенных для производства деталей газотурбинных двигателей и газотурбинных установок, и может быть использовано в авиационной и энергетической промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002572925
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3ac

Металлические волокна из жаростойкого сплава (варианты) и изделие, выполненное из металлических волокон

Группа изобретений относится к металлическим волокнам жаростойкого сплава, которые могут быть использованы для получения истираемых уплотнений проточной части турбины авиационного газотурбинного двигателя. Волокна по варианту 1 выполнены из сплава на основе системы Fe-Cr-Al-Y и содержат 21-27...
Тип: Изобретение
Номер охранного документа: 0002573542
Дата охранного документа: 20.01.2016
Showing 1-3 of 3 items.
20.11.2015
№216.013.92cd

Способ осаждения износостойкого покрытия на алюминиевые сплавы с высоким содержанием кремния

Изобретение относится к области осаждения износостойких комбинированных покрытий для защиты поверхностей алюминиевых сплавов от воздействия агрессивных сред и износа, в частности для защиты алюминиевых литейных сплавов с высоким содержанием кремния, и может быть использовано в авиационной...
Тип: Изобретение
Номер охранного документа: 0002569199
Дата охранного документа: 20.11.2015
19.04.2019
№219.017.3361

Электролит никелирования

Изобретение относится к области гальванотехники и может найти применение в авиационной, автомобильной и других отраслях промышленности. Электролит содержит, г/л: никельсульфаминовокислый 325-440, никель-хлористый 4-10, кобальт сульфаминовокислый 12-30, борная кислота 25-40, натрий лаурилсульфат...
Тип: Изобретение
Номер охранного документа: 0002449063
Дата охранного документа: 27.04.2012
19.04.2019
№219.017.3362

Способ нанесения износостойкого покрытия на титановые сплавы

Изобретение относится к нанесению износостойких покрытий и может найти применение в авиастроении и машиностроении. Проводят диффузионную электрохимическую обработку титанового сплава в электролите следующего химического состава, г/л: ортофосфорная кислота - 1100-1200, сегнетова соль или...
Тип: Изобретение
Номер охранного документа: 0002449053
Дата охранного документа: 27.04.2012
+ добавить свой РИД