×
19.04.2019
219.017.2df7

Результат интеллектуальной деятельности: СИСТЕМА ЗАПРАВКИ И ХРАНЕНИЯ КИСЛОРОДА НА БОРТУ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002347724
Дата охранного документа
27.02.2009
Аннотация: Изобретение относится к средствам жизнеобеспечения экипажей космических аппаратов, в частности при проведении ими внекорабельной деятельности (ВКД). Система содержит блоки: приема газа (в виде заправляемого переносного кислородного блока), предварительной осушки кислорода (с регулятором перепада давления), глубокой осушки кислорода и компримирования. Имеются также устройство управления, распределительные клапаны, трубопроводы, датчики давления и влажности кислорода, а также бортовые кислородные баллоны с датчиком давления, редуктором и клапанами подачи. Система снабжена переключающим электроклапаном, установленным в магистраль, связывающую заправляемый переносной кислородный блок с бортовой системой обеспечения кислородом. Между этим электроклапаном и указанной бортовой системой введены блок предварительной осушки кислорода с датчиком влажности на выходе и электроклапан сброса кислорода в кабину космического аппарата. Электроклапан установлен перед блоком глубокой осушки. Перед компрессором, после блока предварительной осушки, а также на выходе компрессора установлены датчики контроля давления. Заправляемый переносной кислородный блок снабжен герметичными входным и выходным быстроразъемными соединениями. Между входным соединением и заправляемым баллоном установлены обратный клапан и ручной входной клапан. Система имеет улучшенные эксплуатационно-технические характеристики, совмещая в себе функции заправки и хранения кислорода, получаемого из электролизных установок непосредственно на борту космического аппарата. Техническим результатом изобретения является существенное сокращение расходов на доставку кислородных баллонов (или к полному отказу от их доставки) на проведение ВКД, повышение надежности, безопасности и экономичности в процессе функционирования системы. 1 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике, а конкретнее к области проектирования и эксплуатации средств обеспечения жизнедеятельности (СЖО) экипажей космических летательных аппаратов (КЛА).

Как показал опыт эксплуатации пилотируемых космических аппаратов (кораблей, станций), периодически возникает потребность во вне корабельной деятельности (ВКД) - выходов космонавтов в открытый космос для осуществления технических и научно-прикладных задач. Каждый выход связан с определенными массоэнергетическими затратами. В частности, для обеспечения только одного выхода в космос двух человек необходимо затратить около ˜2,5 м3 кислорода. При этом основная часть кислорода (до 75%) расходуется на подготовку к ВКД и осуществление мероприятий для ее завершения (наддувов скафандров для проверки герметичности, продувок скафандров для замены в скафандре воздушной среды на кислородную и осуществления процесса десатурации - вымывания азота из крови человека).

В настоящее время при сравнительно редких выходах (в среднем до 4-х раз в год) требуемое количество кислорода для ВКД доставляется с Земли в отдельных однотипных баллонах с сопутствующей арматурой (заправочным клапаном, редуктором, датчиками давления и клапаном подачи). Часть баллонов устанавливается на борт КЛА (бортовые запасы кислорода), другие баллоны встраиваются в автономную систему жизнеобеспечения (АСОЖ) скафандра и используются непосредственно во время выхода.

Количество выходов в космос строго регламентировано возможностями доставки с Земли потребного количества кислорода.

Известны АСОЖ (см., например, В.Н.Серебряков, «Основы проектирования систем жизнеобеспечения экипажа космических летательных аппаратов», М., «Машиностроение», 1983, стр.69, Алексеев С.М., Уманский С.П. «Высотные и космические скафандры», М., «Машиностроение», 1973, стр.78-84), а также система хранения и подачи газообразного кислорода (патент RU 2248459 С1, 20.03.2003), которые содержат бортовые кислородные баллоны с датчиками давления, редукторами и клапанами подачи.

В среднем для осуществления одного выхода в космос требуется от 4 до 5 таких кислородных баллонов с суммарной массой от 24 до 30 кг. Для уменьшения объема конструкции кислород хранится в баллонах под высоким давлением порядка до 40 МПа. Основными недостатками такого способа обеспечения кислородом являются:

масса конструкции заменяемого кислородного баллона с сопутствующей арматурой примерно в пять раз превышает массу хранящегося в нем кислорода, что приводит к большим непроизводительным затратам для доставки кислорода с Земли и к очень высокой стоимости осуществления процесса ВКД. Например, по существующим расценкам стоимость доставки 1 кг груза на борт МКС составляет порядка 22000$ (на 2006 г.), следовательно, доставка только для одного выхода в космос 5 кислородных баллонов обходится в ˜660000$;

невозможность проведения дополнительных (или незапланированных) выходов в космос в нештатной ситуации при отсутствии возможности доставки с Земли кислородных баллонов;

наличие на борту гермоотсеков кислородных баллонов, хранящихся и эксплуатирующихся под очень высоким давлением, приводит к возникновению потенциальной и весьма опасной ситуации, связанной с возможностью их разгерметизации.

Указанные недостатки ограничивают функциональные возможности автономных систем жизнеобеспечения скафандров для осуществления ВКД, делают ВКД значительно затратным процессом и вносят элемент повышенной опасности в случае разгерметизации кислородных баллонов высокого давления внутри КЛА.

При наличии на борту источника кислорода, например, системы обеспечения кислородом на основе электролизной установки, разлагающей воду на кислород и водород (как на орбитальной станции «Мир» и международной космической станции), и устройств, обеспечивающих заправку кислорода в кислородные баллоны, можно существенно снизить грузопоток, связанный с доставкой кислорода на борт КЛА.

Для обеспечения заправки кислорода от бортовой системы обеспечения кислородом требуется предварительная осушка, так как получаемый в электролизной установке кислород имеет относительную влажность до 75% при температуре до 25°С, что не позволяет закачивать кислород непосредственно в баллоны без его осушки во избежание выпадения влаги в процессе сжатия.

Степень осушки кислорода диктуется тем, что заправляемый кислород должен иметь гарантированное влагосодержание, соответствующее температуре точки росы не выше минус 55°С. Это требование предъявляется с учетом использования кислорода, полученного в бортовых условиях, в автономных системах жизнеобеспечения скафандров. Например, в случае возникновения нештатной ситуации при продувке скафандра кислородом возможен переход на эжекторную подачу кислорода. В этом случае при влагосодержании кислорода, соответствующем tp > минус 55°С, возможно замерзание эжектора, вследствие чего произойдет снижение или полное прекращение подачи кислорода.

Задачей настоящего изобретения является создание системы с улучшенными эксплуатационно-техническими характеристиками, которая совмещает в себе функции заправки и хранения кислорода, получаемого из электролизных установок непосредственно на борту КЛА, и эксплуатация которой приведет к существенному сокращению расходов на доставку кислородных баллонов и/или к полному отказу от их доставки на проведение ВКД и к повышению надежности, безопасности и экономичности в процессе функционирования.

Технический результат достигается тем, что система заправки и хранения кислорода на борту космического аппарата, состоящая из блока приема газа, блока предварительной осушки кислорода с регулятором перепада давления, блока глубокой осушки кислорода, блока компримирования, устройства управления, распределительных клапанов, трубопроводов и датчиков давления и влажности кислорода, а также бортовых кислородных баллонов с датчиком давления, редуктором и клапанами подачи, в отличие от известной снабжена переключающим электроклапаном, установленным в магистраль, связывающую заправляемый переносной кислородный блок с бортовой системой обеспечения кислородом, а между переключающим электроклапаном и бортовой системой обеспечения кислородом введены блок предварительной осушки кислорода, датчик влажности, установленный на выходе блока предварительной осушки, электроклапан сброса кислорода в кабину, установленный перед блоком глубокой осушки, датчик давления перед компрессором, установленный в магистрали между блоком предварительной осушки и компрессором, после которого установлены датчики контроля давления на выходе компрессора, заправляемый переносной кислородный блок снабжен герметичным входным быстроразъемным и герметичным выходным быстроразъемным соединениями, а между герметичным входным быстроразъемным соединением и заправляемым баллоном установлены обратный клапан и ручной входной клапан. В блоке предварительной осушки регулятор перепада давления выполнен поддерживающим избыточное давление не менее 0,02 МПа.

Возможность заправки и хранения кислорода на борту КЛА достигается тем, что система заправки и хранения кислорода (СЗ и ХК) снабжена блоком предварительной осушки и блоком глубокой осушки кислорода, обеспечивающими подготовку кислорода с необходимыми качествами для его компримирования и дыхания, с установленным между ними датчиком влажности, датчиком давления перед компрессором и электроклапаном подачи кислорода в кабину, датчиками давления между компрессором и переключающим электроклапаном после компрессора, подсоединенным через герметичное входное быстроразъемное соединение к переносному кислородному блоку (ПКБ), в состав которого входят входной ручной и обратный клапаны, баллон, а также ручной клапан подачи и редуктор, за которым установлено герметичное выходное быстроразъемное соединение. Элементы СЗ и ХК объединены распределительными трубопроводами и имеют общее устройство управления.

Использование предлагаемой системы заправки и хранения кислорода на борту КЛА бортовых баллонов скафандров позволит:

иметь на борту КЛА дополнительный источник кислорода для осуществления ВКД;

многократно, по мере необходимости, перезаправлять на борту станции кислородный баллон;

осушать кислород перед заправкой в баллон до влагосодержания, исключающего конденсацию влаги при компримировании кислорода и замерзание при переходе на эжекторную подачу кислорода;

очищать кислород от вредных микропримесей, что позволит использовать его для дыхания "под маску" человеком;

повысить безопасность эксплуатации и процесса заправки за счет снижения давления в переносном кислородном блоке (ПКБ);

обеспечить полную автоматизацию процесса заправки ПКБ, позволяющую снизить до минимума нагрузку на экипаж при эксплуатации системы и исключить возможность аварии, вызванной неправильными действиями экипажа;

обеспечить значительный экономический эффект за счет снижения грузопотока на борт КЛА в части доставляемых кислородных баллонов.

Сущность изобретения поясняется чертежами, на которых:

на фиг.1 приведена схема предлагаемой системы в целом, на которой показаны связи устройства управления с элементами системы (входящие стрелки - цепи сигнализации, исходящие стрелки - цепи подачи электропитания);

на фиг.2 показана структурная схема устройства управления (пунктирными линиями с точкой - цепи сигнализации и управления, сплошными линиями - цепи подачи электропитания).

Предлагаемая система заправки и хранения кислорода (СЗ и ХК) состоит из следующих основных блоков, агрегатов и аппаратуры: блока предварительной осушки 1 (БПО), на выходе которого установлен датчик влажности 2, соединенный с блоком глубокой осушки 3 (БГО), датчиком давления 4 (ДД1) и электроклапаном 5 (ЭК) подачи кислорода в кабину, к выходу блока глубокой осушки 3 подсоединен компрессор 6 (КОМ), связанный с многократно перезаправляемым переносным кислородным блоком 7 (ПКБ) трубопроводом, содержащим переключающий электроклапан 8 (ЭК) и датчики давления 9 (ДД2-ДД4).

Переносной кислородный блок (ПКБ) 7 многоразового применения содержит баллон 16 с подсоединенными к нему обратным клапаном 17 (OK), ручным входным клапаном 18 (РК1), датчиком давления 19 (ДД5), ручным клапаном подачи 20 (РК2) и редуктором 21 (Р).

На входе в ПКБ установлено герметичное входное быстроразъемное соединение 11, позволяющее многократное подсоединение к переключающему электроклапану 8. На выходе ПКБ имеется герметичное выходное быстроразъемное соединение 14, позволяющее многократное подсоединение к потребителям кислорода.

Обратный клапан 17 предназначен для перекрытия газовой магистрали при движении кислорода в обратном направлении (исключения обратного перетекания кислорода в процессе заправки и хранения баллона).

Для безопасности ручной клапан подачи 20 имеет возможность регулировки подачи кислорода. Кроме того, уплотнительный элемент редуктора 21 выполнен с дренажным каналом, с помощью которого возможные утечки кислорода высокого давления вокруг уплотнителя отводятся на выход редуктора 21.

СЗ и ХК снабжены устройством управления 10 (УУ), состоящим из блока питания 39 (БП), блока обработки сигналов 12 (БОС), логического устройства 13 (ЛУ), панели управления и сигнализации 38 (ПУС) и блока коммутации 15 (БК).

Блок предварительной осушки 1, установленный на входе в систему заправки и хранения кислорода, состоит из двух адсорберов 25 и 26 с встроенными электронагревателями 32 и 33 (ТЭН), попеременно работающих в режимах сорбции/десорбции/охлаждения, электроклапанов с ручным дублированием 23, 24 и 27-30, обеспечивающих необходимое направление газовых потоков, регулятора избыточного давления 22 для постоянного поддержания избыточного давления в БПО 1 не менее 0,02 МПа с целью повышения эффективности процессов, происходящих в адсорберах. Адсорберы 25 или 26 регенерируются нагревом с помощью нагревателей ТЭН 32 и 33 с обратной продувкой через ограничитель расхода (дроссель) 31 небольшой частью осушенного кислорода, который затем сбрасывается в кабину через электроклапаны 28 или 27.

По окончании десорбции происходит охлаждение адсорберов продувкой небольшой частью осушенного кислорода, который затем сбрасывается в кабину при выключенных нагревателях.

Блок предварительной осушки 1 обеспечивает осушку кислорода до влагосодержания, соответствующего температуре точки росы tp от минус 50°С до минус 55°С. Кроме того, БПО 1 обеспечивает высокую чистоту осушаемого кислорода за счет поглощения вредных примесей в адсорберах 25 и 26.

Датчик влажности 2 предназначен для контроля влагосодержания в кислороде на выходе из БПО 1.

Блок глубокой осушки (БГО) 3 представляет собой адсорбер с нерегенерируемым поглотителем с комбинированной засыпкой (первый слой - силикагель, второй слой - цеолит), обеспечивающий гарантированную доосушку кислорода до влагосодержания, соответствующего температуре точки росы tp от минус 60 до минус 70°С, в связи с большой погрешностью показаний датчиков влажности в диапазоне температур точки росы от минус 50°С до минус 70°С.

При отказе БПО 1 блок глубокой осушки 2 обеспечивает осушку ограниченного количества кислорода без БПО 1.

Датчик избыточного давления ДД1 4 обеспечивает постоянный автоматический контроль давления в магистрали от БПО 1 до компрессора 6. При повышении давления более заданной величины логическое устройство 13 формирует команду на выключение СЗ и ХК с выдачей информации на ПУС - «Отказ компрессора».

Датчики избыточного давления ДД2-ДД4 9 обеспечивают постоянный автоматический контроль давления на выходе из компрессора 6. При получении сигнала от датчиков давления ДД2-ДД4 9 о достижении заданного давления в ПКБ 7 логическое устройство 13 формирует команды на выключение СЗ и ХК с выдачей информации на ПУС - «Заправка ПКБ закончена».

Электроклапан 5 подачи кислорода в кабину, выполненный с ручным дублированием, обеспечивает автоматический сброс кислорода в кабину в случае повышенной влажности (более минус 45°С температуры точки росы), сохраняя тем самым ресурс БГО 3.

Компрессор 6 обеспечивает заправку баллона 16 кислородом до давления не более 15 МПа.

Переносной кислородный блок 7 (ПКБ) служит для хранения запасов кислорода, полученных из системы обеспечения кислородом, и обеспечения подачи его потребителям.

В ПКБ:

обратный клапан ОК 17 не допускает обратного перетекания кислорода в процессе заправки ПКБ 7;

входной ручной клапан РК1 18 предназначен для закрытия магистрали подачи кислорода в ПКБ;

датчик избыточного давления ДД5 19 обеспечивает постоянный автоматический контроль давления в баллоне 16;

ручной клапан подачи РК2 20 обеспечивает открытие магистрали подачи кислорода;

редуктор Р 21 обеспечивает снижение входного давления к потребителю до заданного (не более 0,45 МПа);

баллон 16 заправляется кислородом до давления не более 15 МПа;

герметичное входное быстроразъемное соединение 11 (на входе в ПКБ 7) и герметичное выходное быстроразъемное соединение 14 (на выходе из ПКБ 7) обеспечивают многократную подстыковку ПКБ к переключающему электроклапану 8 и к потребителям кислорода.

Переключающий электроклапан 8 обеспечивает автоматическое открытие магистрали подачи кислорода в ПКБ 7 при достижении им влагосодержания менее минус 55°С точки росы и закрытие при повышении влажности более минус 55°С точки росы.

Устройство управления 10 осуществляет автоматический режим заправки переносного кислородного блока 7.

В устройстве управления 10 блок обработки сигналов 12 (аналогово-цифровой преобразователь) получает информацию о состоянии электроклапана 5 подачи кислорода в кабину и переключающего электроклапана 8, от датчиков давления 4, 9, 19, значении тока и числа оборотов двигателя компрессора 6 от таходатчика 35, значении тока нагревателей адсорберов (от датчиков тока БК 37), а также о состоянии электроклапанов 23, 24 и 27-30 и нагревателей 32, 33 в БПО 1, переводит их в цифровой код и выводит информацию на ПУС 38 о текущем состоянии контролируемых параметров, а также направляет аналогичную информацию в логическое устройство 13.

Логическое устройство 13 получает управляющие воздействия с пульта управления и сигнализации 38, вводимые космонавтом, и выполняет следующие функции:

постоянно анализирует текущее состояние системы по следующим параметрам:

влагосодержание кислорода после БПО 1 (по информации от датчика влажности 2);

ток и обороты двигателя компрессора 6 (по сигналу от таходатчика двигателя компрессора 35);

давление перед компрессором 6 (от датчика давления ДД1 4);

давление за компрессором 6 (от датчиков давления ДД2-ДД4 9);

положение электроклапанов 5, 8, 23; 24, 27-30 (по информации от сигнализаторов положения клапанов 34);

ток в цепи нагревателей 32 и 33 (от датчиков тока 37);

температура внутри адсорберов 25 и 26 (от датчиков температуры 36);

выдает информацию о состоянии системы на пульт управления и сигнализации 38, а также, в случае отклонения параметров от допустимых значений, выдает рекомендации оператору (космонавту) о дальнейшей работе с системой;

обеспечивает заданную последовательность выдачи команд в блок коммутации 15 в процессе запуска системы, ее функционирования и приведения в исходное состояние после завершения процесса заправки;

формирует и выдает команды на перекладку электроклапанов 23, 24 и 27-30 в БПО 1 и переключение электронагревателей 32, 33 в адсорберах 25, 26 в соответствии с временными циклами, задаваемыми оператором с пульта управления и сигнализации 38 для осуществления процессов сорбции/десорбции/ охлаждения в БПО 1;

выдает команды на выключение системы при:

а) появлении сигналов от датчиков температуры 36 в адсорберах 25 или 26 об отклонении от допустимых значений и формирует сообщение «Отказ БПО»;

б) получении сигнала от датчика давления 4 об увеличении давления перед компрессором 6 более давления настройки регулятора давления 22 и формирует сообщение «Отказ компрессора»;

в) несоответствии положения клапанов заданному состоянию (по данным от сигнализаторов положения клапанов 34);

г) повышении токопотребления выше заданной величины (от датчиков тока в БК 37);

выдает команды на открытие электроклапана 5 подачи кислорода в кабину, выключение компрессора 6 и закрытие переключающего электроклапана 8 при получении сигнала от датчика влажности 2 об увеличении влагосодержания более температуры точки росы минус 45°С с выдачей сообщения на пульт управления и сигнализации - «Влагосодержание кислорода выше нормы»;

выдает команды в БК на приведение системы в исходное состояние, при получении сигнала от датчиков давления 9 о достижении заданного давления в ПКБ 7 выдает сообщение на пульт 38 «Заправка ПКБ закончена».

Блок питания 39 устройства управления 10 обеспечивает подачу электропитания на блок обработки сигналов 12, логическое устройство 13, панель управления и сигнализации 38 и блок коммутации 15.

На панели сигнализации и управления 38 отображается текущее состояние контролируемых параметров, получаемых от блока обработки сигналов 12. Имеется сигнальное табло, на котором отображается обобщающая информация о состоянии системы и предупреждающая информация экипажу об отклонении параметров от допустимого диапазона и необходимости вмешательства экипажа в работу СЗ и ХК (например, отказе электропривода компрессора 6 по сигналам с таходатчика 35, отказе электронагревателей 32, 33 и т.д.).

Кроме того, с панели управления выдаются отдельные команды (в случае сбоя в выполнении алгоритма работы) на управление работой электроклапанов и компрессора.

СЗ и ХК работает следующим образом. Космонавт включает устройство управления 10, которое опрашивает исходное состояние всех параметров и агрегатов СЗ и ХК. При соответствии параметров системы исходному состоянию и выдачи управляющего воздействия с пульта управления и сигнализации 38 логическое устройство 13 выдает команду в бортовую систему обеспечения кислородом (СКО) на открытие клапана подачи кислорода в СЗ и ХК (на схеме не показан), а затем на открытие электроклапанов 5, 29, 27, 23 и включение электронагревателя 32 адсорбера 26 для одновременного осуществления начала сорбции влаги в адсорбере 25 и десорбции влаги в адсорбере 26.

В процессе сорбции кислород подается на вход БПО 1 от СКО под избыточным давлением, поддерживаемым регулятором давления 22, через клапан 29 в адсорбер 25, где осушается до влагосодержания, соответствующего температуре точки росы tp от минус 50 до минус 55°С, и очищается от вредных микропримесей до чистоты, позволяющей использовать его для дыхания.

Основная часть кислорода, подсушенного в адсорбере 25, проходит через датчик влажности 2. В начале процесса сорбции до тех пор, пока влагосодержание кислорода соответствует температуре точки росы tp более минус 45°С, логическое устройство 13 формирует команду в блок коммутации 15 на открытие клапана 5 подачи кислорода в кабину и кислород поступает в кабину. При достижении влагосодержания, соответствующего точке росы tp менее минус 45°С, логическое устройство 13 формирует команду на закрытие клапана 5 подачи кислорода в кабину и открытие переключающего электроклапана 8, затем - на включение компрессора 6 и открытие переключающего электроклапана 8.

Эффективность процесса осушки (сорбции) выше, чем больше избыточное давление. Величина избыточного давления в БПО 1 определяется возможностями бортовой системы обеспечения кислородом.

Кислород, прокачиваемый компрессором 6, проходит через блок глубокой осушки 3, где он осушается до влагосодержания, соответствующего температуре tp от минус 60 до минус 70°С, и дополнительно очищается от вредных микропримесей. После БГО 3 осушенный кислород поступает на вход компрессора 6, который закачивает его в баллон 16 через открытый переключающий электроклапан 8, обратный клапан 17 и ручной входной клапан 18.

В процессе десорбции адсорбера 26 часть осушенного кислорода поступает через ограничитель расхода 31 в адсорбер 26, где участвует в качестве газа-носителя в процессе десорбции влаги из адсорбера 26 при включенном электронагревателе 32. Затем увлажненный кислород через открытый электроклапан 27 сбрасывается в кабину КЛА.

По окончании десорбции логическое устройство 13 выдает команду в БК 15 на выключение электронагревателя 32 (включение режима охлаждения адсорбера 26) для охлаждения адсорбера 26 за счет продолжающейся продувки его частью осушенного кислорода.

При завершении продувки адсорбера 26 заканчивается цикл сорбции в адсорбере 25. По временной метке, заложенной в алгоритм работы БПО 1, логическое устройство 13 выдает команды на перекладку электроклапанов 29, 23, 27 в закрытое положение, а электроклапанов 30, 24, 28 в открытое положение и выключение электронагревателя 32 и включение электронагревателя 33 для обеспечения процесса десорбции в адсорбере 25 и сорбции в адсорбере 26.

Затем циклы сорбции и десорбции повторяются, обеспечивая непрерывное поступление сухого кислорода в компрессор 6 и далее в баллон 16.

Если в процессе заправки давление перед компрессором 6 превысит давление настройки регулятора давления 22 более чем на 0,03 МПа (по сигналу с датчика давления 4), логическое устройство 13 выдаст команды на открытие электроклапана 5 подачи кислорода в кабину, закрытие переключающего электроклапана 8, выключение компрессора 6 и сформирует сообщение об отказе СЗ и ХК с соответствующей сигнализацией на панели управления и сигнализации 38.

При достижении за компрессором 6 (в баллоне 16) избыточного давления 13 МПа логическое устройство 13 выдает команды на выключение компрессора 6 и открытие электроклапана 5 подачи кислорода в кабину, закрытие переключающего электроклапана 8, выключение работающего электронагревателя в блоке предварительной осушки 1. Затем БПО 1 согласно алгоритму работы продувается кислородом в течение 30 минут для охлаждения адсорбера, который находился в режиме десорбции. Затем логическое устройство 13 выдает команду на приведение СЗ и ХК в исходное состояние с выдачей информации на ПУС - «Заправка ПКБ закончена».

1.Системазаправкиихранениякислороданабортукосмическогоаппарата,содержащаяблокприемагазаввидезаправляемогопереносногокислородногоблока,блокпредварительнойосушкикислородасрегуляторомперепададавления,блокглубокойосушкикислорода,блоккомпримирования,устройствоуправления,распределительныеклапаны,трубопроводы,датчикидавленияивлажностикислорода,атакжебортовыекислородныебаллонысдатчикомдавления,редукторомиклапанамиподачи,приэтомсистемаснабженапереключающимэлектроклапаном,установленнымвмагистраль,связывающуюзаправляемыйпереноснойкислородныйблоксбортовойсистемойобеспечениякислородом,амеждуэтимпереключающимэлектроклапаномиуказаннойбортовойсистемойвведеныблокпредварительнойосушкикислорода,датчиквлажности,установленныйнавыходеблокапредварительнойосушки,электроклапансбросакислородавкабинукосмическогоаппарата,установленныйпередблокомглубокойосушки,датчикдавленияпередкомпрессором,установленныйвмагистралимеждублокомпредварительнойосушкиикомпрессором,послекоторогоустановленыдатчикиконтролядавлениянавыходекомпрессора,причемзаправляемыйпереноснойкислородныйблокснабженгерметичнымвходнымбыстроразъемнымигерметичнымвыходнымбыстроразъемнымсоединениями,амеждугерметичнымвходнымбыстроразъемнымсоединениемизаправляемымбаллономустановленыобратныйклапаниручнойвходнойклапан.12.Системапоп.1,вкоторойрегуляторперепададавлениявблокепредварительнойосушкивыполненподдерживающимизбыточноедавлениенеменее0,02МПа.2
Источник поступления информации: Роспатент

Showing 281-290 of 370 items.
20.01.2018
№218.016.1e4e

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает ориентацию рабочей поверхности СБ на Солнце, измерение значений тока от СБ, контроль текущего состояния СБ по результатам сравнения текущих...
Тип: Изобретение
Номер охранного документа: 0002640937
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eb2

Способ определения временной привязки телеметрических измерений с космического аппарата

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт. При этом измеряют параметры орбиты КА и...
Тип: Изобретение
Номер охранного документа: 0002641024
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.231a

Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, и способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002641983
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.31f7

Способ контроля телеметрической информации

Изобретение относится к технологиям многопараметрического контроля телеметрической информации. Техническим результатом является расширение арсенала технических средств контроля телеметрической информации. Предложен способ контроля телеметрической информации. Способ основан на сравнении реальных...
Тип: Изобретение
Номер охранного документа: 0002645267
Дата охранного документа: 19.02.2018
20.02.2019
№219.016.bd12

Коммутатор напряжения с защитой блока нагрузки от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой блока нагрузки от перегрузки по току. Коммутатор напряжения с защитой блока нагрузки от перегрузки по току содержит электронный ключ, который через датчик тока нагрузки...
Тип: Изобретение
Номер охранного документа: 02242831
Дата охранного документа: 20.12.2004
20.02.2019
№219.016.be4a

Устройство деления потока жидкости

Изобретение относится к машиностроению и предназначено для использования в системах терморегулирования изделий авиационной и космической техники, а также и в других областях техники. Устройство деления потока жидкости содержит корпус с расточкой, одним входным патрубком и двумя выходными...
Тип: Изобретение
Номер охранного документа: 0002342582
Дата охранного документа: 27.12.2008
20.02.2019
№219.016.be53

Устройство для выбора объектов наблюдения с орбитального космического аппарата

Устройство для выбора объектов наблюдения с орбитального космического аппарата (КА). Устройство для выбора объектов наблюдения с орбитального КА включает глобус с нанесенной на него картой, два охватывающих глобус кольца, первое из которых закреплено над точками полюсов глобуса с возможностью...
Тип: Изобретение
Номер охранного документа: 0002346241
Дата охранного документа: 10.02.2009
20.02.2019
№219.016.bf8e

Способ определения альбедо земли

Изобретение относится к космической технике. Способ включает последовательное размещение над отражающей поверхностью не менее чем в двух пространственных положениях чувствительной к регистрируемой радиации аппаратуры и определение моментов нахождения Солнца в зенитной области над снабженным...
Тип: Изобретение
Номер охранного документа: 0002351919
Дата охранного документа: 10.04.2009
20.02.2019
№219.016.bf99

Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления

Изобретение относится к области космической техники, к системам электроснабжения космических аппаратов, и может быть использовано при эксплуатации солнечных батарей. Способ определения максимальной выходной мощности солнечных батарей космического аппарата включает измерение угла между...
Тип: Изобретение
Номер охранного документа: 0002353555
Дата охранного документа: 27.04.2009
20.02.2019
№219.016.bf9d

Аварийно-спасательный скафандр космонавта для транспортного средства

Изобретение относится к аварийно-спасательному космическому скафандру мягкого типа. Согласно изобретению скафандр содержит внешнюю силовую и внутреннюю герметичную оболочки, герметизируемый вход в эти оболочки, шлем с остеклением, регулятор давления, объединенный разъем коммуникаций...
Тип: Изобретение
Номер охранного документа: 0002353561
Дата охранного документа: 27.04.2009
Showing 1-1 of 1 item.
20.02.2019
№219.016.bf9d

Аварийно-спасательный скафандр космонавта для транспортного средства

Изобретение относится к аварийно-спасательному космическому скафандру мягкого типа. Согласно изобретению скафандр содержит внешнюю силовую и внутреннюю герметичную оболочки, герметизируемый вход в эти оболочки, шлем с остеклением, регулятор давления, объединенный разъем коммуникаций...
Тип: Изобретение
Номер охранного документа: 0002353561
Дата охранного документа: 27.04.2009
+ добавить свой РИД