×
19.04.2019
219.017.2de0

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ ОТ ВЫСОКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ ПОВЕРХНОСТИ ВНУТРЕННЕЙ ПОЛОСТИ ОХЛАЖДАЕМЫХ ЛОПАТОК ТУРБИН ИЗ БЕЗУГЛЕРОДИСТЫХ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002349678
Дата охранного документа
20.03.2009
Аннотация: Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов. Проводят насыщение поверхности внутренней полости лопатки углеродом со степенью насыщения от 1,5 до 8 г/м путем заполнения внутренней полости лопатки порошковой смесью или газовой средой, нагрева и выдержки лопатки с заполненной внутренней полостью. Затем осуществляют нанесение диффузионного алюминидного покрытия со степенью насыщения от 15 до 60 г/м. Получают жаростойкое покрытие для защиты от высокотемпературного окисления поверхности внутренней полости лопатки турбины. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов.

В промышленности широко известен способ защиты лопатки турбины из жаропрочного сплава насыщением поверхности в порошковой смеси, содержащей порошок сплава Fe-Al и галогенидный активатор, обычно хлористый аммоний (Тамарин Ю.А. Жаростойкие диффузионные покрытия лопаток газотурбинных двигателей. М.: Машиностроение, 1978). Способ используется для получения алюминидного покрытия на внешней поверхности лопатки турбины и обеспечивает равномерность по толщине покрытия на криволинейных поверхностях лопаток.

В известном способе не рассмотрена возможность его использования для защиты внутренней полости лопатки турбины, что является недостатком этого способа.

Известны способы защиты внутренней полости охлаждаемой лопатки турбины из жаропрочного сплава от высокотемпературного окисления, включающие подготовку порошковой смеси, заполнение внутренней полости лопатки порошковой смесью, нагрев и выдержку лопатки при температуре до формировании на поверхности лопатки диффузионного алюминидного или хромоалюминидного покрытия, удаление порошковой смеси из внутренней полости лопатки (пат. США №№7094445, 5807428).

Способы по указанным патентам отличаются в основном составом порошковой смеси и режимами процесса алитирования или хромоалитирования.

Способы позволяют сформировать на внутренней поверхности лопатки диффузионный алюминидный или хромоалюминидный слой, обеспечивающий длительную защиту этой поверхности для лопаток из жаропрочных сплавов (ЖС) с карбидным упрочнением.

Известен также способ защиты от высокотемпературного окисления внутренней полости охлаждаемой лопатки турбины из жаропрочного сплава, включающий подготовку поверхности внутренней полости лопатки под покрытие, подготовку порошковой смеси, нагрев порошковой смеси и лопатки до температуры обработки и выдержку при этой температуре и принудительную циркуляцию газовой среды от источника насыщающего элемента из порошковой смеси к наружным и внутренним поверхностям деталей с периодическим изменением скорости потока (патент РФ №1238597; Лесников В.П., Кузнецов В.П. Технология получения газоциркуляционных защитных покрытий. ГТТ №3, 2000 г., с.26-30).

Способ позволяет сформировать на внутренней и на внешней поверхности лопатки диффузионный алюминидный или хромоалюминидный слой (алюминидное покрытие), обеспечивающий защиту лопатки из жаропрочного сплава (ЖС) с карбидным упрочнением.

Известные способы имеют общий недостаток. Их нельзя использовать для защиты внутренней полости лопаток из современных безуглеродистых ЖС на основе никеля. Сформированный на этих сплавах диффузионный слой не имеет переходной зоны, состоящей преимущественно из карбидов. Переходная зона характерна для диффузионного покрытия на обычных углеродосодержащих ЖС. Отсутствие переходной зоны у диффузионного покрытия, препятствующей диффузии алюминия и хрома из покрытия в ЖС, в процессе работы лопатки приводит к быстрому снижению концентрации легирующих элементов в покрытии за счет их диффузии в поверхностный слой материала лопатки. При этом из-за диффузии в поверхностном слое материала лопатки на большую глубину (>> толщины покрытия) образуется зона, состоящая из хрупких, топологически плотно упакованных, пластинчатых фаз (ТПУ-фаз), которые снижают прочностные характеристики безуглеродистого ЖС (длительную жаропрочность, предел усталости, термостойкость). Одновременно с этим вследствие диффузии легирующих элементов покрытия в ЖС резко снижается жаростойкость покрытия. Таким образом, использование известных способов для защиты поверхности внутренней полости лопаток турбин из современных безуглеродистых ЖС путем их порошкового или газоциркуляционного алитирования или хромоалитирования не обеспечивает требуемый ресурс покрытия и может быть использовано только при очень ограниченном времени работы лопатки (не более 100 ч). Отметим, что ресурс современных лопаток турбины составляет 104 ч и более.

Известен способ защиты внутренней полости охлаждаемой лопатки турбины из жаропрочного сплава на основе никеля, содержащего углерод, включающий приготовление порошковой смеси, нагрев порошковой смеси и лопатки турбины и нанесение диффузионного алюминидного покрытия на поверхность внутренней полости лопатки (Патент США 4347267).

В известном способе нанесение алюминидного покрытия (алитирование или хромоалитирование) на поверхность внутренней полости лопатки осуществляется либо контактным (порошковым) способом путем заполнения внутренней полости порошковой смесью, либо бесконтактным способом в атмосфере, содержащей галогениды насыщающих элементов (Al, Al-Cr).

Известный способ позволяет получать на поверхности внутренней полости лопаток из жаропрочных сплавов на основе никеля с карбидным упрочнением диффузионный алюминидный или хромоалюминидный слой, обеспечивающий длительную защиту этой поверхности от окисления.

Недостатком известного способа является то, что он не обеспечивает защиту внутренней полости лопатки турбины из современного безуглеродистого ЖС на основе никеля. Сформированное на этих сплавах по известному способу диффузионное алюминидное покрытие не имеет переходной зоны, состоящей преимущественно из карбидов, что не обеспечивает работоспособность такого покрытия и приводит к разупрочнению жаропрочного сплава лопатки из-за образования под покрытием зоны с ТПУ-фазами.

Технической задачей настоящего изобретения является создание жаростойкого покрытия для защиты от высокотемпературного окисления поверхности внутренней полости лопатки турбины, изготовленной из современного жаропрочного безуглеродистого сплава на основе никеля для монокристального литья.

Это достигается тем, что предложен способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля, включающий насыщение поверхности внутренней полости лопатки углеродом со степенью насыщения от 1,5 до 8 г/м2 путем заполнения внутренней полости лопатки порошковой смесью или газовой средой, нагрева и выдержки лопатки с заполненной внутренней полостью и последующее нанесение диффузионного алюминидного покрытия со степенью насыщения от 15 до 60 г/м2.

Насыщение поверхности внутренней полости лопатки углеродом проводят при температуре 900-1000°С в течение 1-6 ч из порошка углерода фракцией 5-60 мкм или из пасты на основе порошка углерода с 35-45 мас.%, дистиллированной воды или ацетона, или этилового спирта.

Насыщение поверхности внутренней полости лопатки углеродом проводят в газовой смеси с углеродосодержащим газом, например метаном, при температуре 900-1000°С в течение 2-6 ч.

Насыщение углеродом поверхности внутренней полости лопатки из современного безуглеродистого ЖС обеспечивает при последующем алитировании или хромоалитировании поверхности внутренней полости лопатки формирование на поверхности жаростойкого диффузионного покрытия с карбидным переходным слоем, разделяющим ЖС от внешнего жаростойкого слоя покрытия на основе NiAl (β-фаза). На поверхности безуглеродистого ЖС при этом образуется жаростойкое покрытие, аналогичное для диффузионных покрытий на обычных углеродосодержащих ЖС с карбидным упрочнением, что обеспечивает многократное снижение диффузии алюминия или алюминия и хрома в поверхность безуглеродистого ЖС при рабочей температуре внутренней полости лопатки и соответствующее увеличение ресурса покрытия.

Для формирования на поверхности безуглеродистого ЖС жаростойкого алюминидного покрытия минимальной толщины 10 мкм поверхность ЖС насыщают углеродом на глубину 15-17 мкм, что соответствует степени насыщения в 1,5 г/м2.

При максимальной толщине алюминидного покрытия 50 мкм поверхность ЖС насыщают углеродом на глубину 65-70 мкм, что для жаропрочного сплава ЖС36 соответствует степени насыщения поверхности углеродом в 8 г/м2. Точное дозирование углерода при формировании насыщенного слоя на поверхности внутренней полости лопатки обеспечивает минимальное воздействие процесса насыщения на безуглеродистый ЖС и не снижает его прочностных характеристик, что также способствует достижению цели изобретения. Минимальная толщина алюминидного покрытия 10 мкм (степень насыщения 15 г/м2) используется для лопатки с ресурсом до 500 ч. Максимальная толщина алюминидного покрытия 50 мкм (степень насыщения 60 г/м2) обеспечивает ресурс лопатки на уровне 104 ч и более.

Насыщение поверхности углеродом проводят из порошка углерода фракцией 5-60 мкм при температуре 900-1000°С в течение 1-6 ч, или из пасты на основе порошка углерода с 35-45% мас. дистиллированной воды, или ацетона ЧДА, или этилового спирта, что обеспечивает получение степени насыщения поверхности углеродом от 1,5 до 8 г/м2 и соответствует глубине насыщенного слоя углеродом от 15 до 65-70 мкм.

Экспериментально сняты кинетические кривые степени насыщения поверхности ЖС углеродом от длительности выдержки при постоянной температуре, позволяющие определить режим насыщения для получения требуемой степени насыщения. Аналогичные результаты были получены для процесса насыщения углеродом из газовой смеси в области температур 900-1000°С и времени 2-6 ч.

Выбор порошка углерода фракцией 5-60 мкм, или пасты на основе порошка углерода с 35-45% мас. дистиллированной воды, или ацетона ЧДА, или этилового спирта не оказывает существенного влияния на процесс насыщения. Во всех случаях различие в скорости насыщения изменяется в пределах 10-15%, причем переход к пасте на водной основе снижает скорость насыщения, а переход к пасте на основе ацетона ЧДА или этилового спирта позволяет повысить скорость насыщения.

Выбор фракции порошка углерода 5-60 мкм обеспечивает легкое заполнение внутренней полости лопатки и легкое удаление смеси из этой полости и стабильность процесса цементации.

Таким образом, совокупность существенных признаков предлагаемого изобретения позволяет создать жаростойкое покрытие для защиты от высокотемпературного окисления поверхности внутренней полости монокристальной лопатки турбины, изготовленной из современного жаропрочного безуглеродистого сплава на основе никеля.

Сущность изобретения поясняется следующим примерами.

Пример 1. Для защиты внутренней полости лопатки турбины из безуглеродистого сплава ЖС36 проводили подготовку поверхности внутренней полости лопатки и поверхности образца из сплава ЖС36 путем гидроабразивной обработки поверхности водной суспензией, содержащей электрокорунд, фракцией 30-50 мкм. Затем проводили промывку внутренней полости водой под давлением до полного удаления электрокорунда, затем промывали лопатку и внутреннюю полость в горячей проточной и в дистиллированной воде, и проводили сушку лопатки сначала на воздухе, а затем в вакуумном термошкафу при температуре 180°С. Таким образом, была подготовлена партия лопаток и образцов из сплава ЖС36. Одновременно с этим проводили подготовку исходных материалов для проведения насыщения поверхности внутренней полости лопатки углеродом. Для этого проводили сушку порошка углерода при температуре 150°С в течение 1 ч. Затем заполняли этим порошком внутреннюю полость лопатки через отверстия для подачи в лопатку охлаждающего воздуха и закрывали эти отверстия асбестовым шнуром. Таким же образом готовили пасту на основе порошка углерода с 35-45 мас.% дистиллированной воды, ацетона ЧДА и этилового спирта. Затем заполняли пастой внутреннюю полость других лопаток при помощи шприца и закрывали эти отверстия лопаток асбестовым шнуром. Затем лопатки укладывали в контейнер, герметизировали крышку контейнера и проводили процесс насыщения при температурах 900; 950; 1000°С в течение 2, 4, 6 ч. Затем контейнер охлаждали и удаляли из внутренней полости лопаток смесь, продували внутреннюю полость лопатки чистым сжатым воздухом и проводили контроль процесса по степени насыщения поверхности углеродом и глубине насыщенного слоя. Полученные данные сведены в таблицу

Режим насыщения поверх. ЖС углеродомСтепени насыщения поверхности сплава ЖС36 углеродом, г/м2 / глубина слоя, мкм
Порошок углеродаПаста с дист. водойПаста с ацетономПаста с эт. спиртом
12345
900°С 2 ч1,5/141,1/102,1/192,1/19
4 ч2,8/252,2/204,0/364,0/36
6 ч4,1/372,9/265,5/505,5/50
12345
950°С 2 ч2,4/221,5/142,9/262,9/26
4 ч3,9/353,5/324,7/434,7/43
6 ч5,2/474,5/416,1/556,1/55
1000°С 2 ч3,5/322,2/204,2/384,2/38
4 ч6,0/544,0/366,8/626,8/62
6 ч8,0/725,1/469,1/829,1/82

Затем лопатки со степенью насыщения поверхности сплава ЖС36 углеродом 1,5, 5,2 и 8 г/м2 прошли подготовку поверхности перед процессом нанесения диффузионного алюминидного покрытия (гидроабразивная обработка, промывка внутренней полости водой и сушка лопаток сначала на воздухе, а затем в вакуумном термошкафу при температуре 180°С). Затем на половине лопаток из каждой группы проводили процесс серийного порошкового алитирования поверхности с удельным привесом 15, 40 и 60 г/м2, а на второй половине лопаток каждой группы проводили процесс серийного газового циркуляционного хромоалитирования также с удельным привесом 15, 40 и 60 г/м2. Таким образом, на лопатках турбины были получены диффузионные алюминидные покрытия толщиной 10 мкм (лопатки со степенью насыщения углеродом 1,5 г/м2), 32 мкм (лопатки со степенью насыщения углеродом 5,2 г/м2) и 50 мкм (8 г/м2) с характерной двухзонной микроструктурой, состоящей из переходного слоя на основе карбидов и внешнего слоя на основе моноалюминида никеля, содержащего субмелкодисперсные карбиды хрома, вольфрама и карбидообразующих элементов, входящих в состав сплава ЖС36.

Пример 2. Отличается от примера 1 тем, что в качестве лопаток использовали лопатки из безуглеродистого сплава ЖС40 и ЖС47, и тем, что насыщение проводили в газовой среде. В качестве газовой среды использовали смесь газов: 2% метана, 3% Н2, остальное аргон.

Насыщение проводили по серийной технологии по режиму 1000°С, 5 ч в смеси газов (3% метан, 3% Н2, остальное аргон). На контрольном образце из сплава ЖС40 был получена степень насыщения 7,9 г/м2, что соответствует глубине слоя 56 мкм для сплава ЖС40, а на контрольном образце из сплава ЖС47 получена степень насыщения 6 г/м2, что соответствует глубине слоя 68 мкм. Затем лопатки и контрольные образцы прошли подготовку поверхности под нанесение алюминидного покрытия. Затем на половине лопаток из каждой группы проводили процесс серийного порошкового хромоалитирования поверхности, а на второй половине лопаток каждой группы проводили процесс серийного газового циркуляционного хромоалитирования. Таким образом, на лопатках турбины были получены диффузионные алюминидные покрытия толщиной 50 мкм с характерной для обычных углеродосодержащих ЖС двухзонной микроструктурой, состоящей из внешнего жаростойкого слоя и переходного слоя на основе фазы Ni3Al и карбидов.

Металлографические исследования полученных защитных покрытий на контрольных образцах и на одной лопатке из каждой группы лопаток показали, что во всех группах лопаток на поверхности внутренней полости формируются алюминидные диффузионные покрытия с характерной двухзонной структурой - внешним жаростойким слоем на основе фазы NiAl и внутренним переходным диффузионным слоем на основе карбидов из тугоплавких карбидообразующих элементов сплавов ЖС36, ЖС40, ЖС47 и фазы Ni3Al, что характерно для обычных углеродосодержащих ЖС с карбидным упрочнением.

Проведены исследования полученных покрытий на жаростойкость при выдержке лопаток на воздухе в течение 1000 ч при температуре 950°С, характерной для внутренней поверхности охлаждаемых лопаток турбин, и повторные металлографические исследования лопаток после испытаний. Исследования показали, что после длительной выдержки на поверхности сплава лопатки, примыкающей к покрытию, нет ТПУ-фаз, что свидетельствует о минимальной диффузии алюминии и хрома из покрытия в сплав и эффективности такого способа защиты внутренней полости лопаток из безуглеродистых ЖС от высокотемпературного окисления. Таким образом, прелагаемый способ обеспечивает длительную защиту внутренней полости охлаждаемой лопатки турбины из жаропрочных безуглеродистых сплавов на основе никеля и может найти применение при освоении этих сплавов в промышленности.

1.Способзащитыотвысокотемпературногоокисленияповерхностивнутреннейполостиохлаждаемыхлопатоктурбинизбезуглеродистыхжаропрочныхсплавовнаосновеникеля,включающийнасыщениеповерхностивнутреннейполостилопаткиуглеродомсостепеньюнасыщенияот1,5до8г/мпутемзаполнениявнутреннейполостилопаткипорошковойсмесьюилигазовойсредой,нагреваивыдержкилопаткисзаполненнойвнутреннейполостьюипоследующеенанесениедиффузионногоалюминидногопокрытиясостепеньюнасыщенияот15до60г/м.12.Способпоп.1,отличающийсятем,чтонасыщениеповерхностивнутреннейполостилопаткиуглеродомпроводятпритемпературе900-1000°Свтечение1-6чизпорошкауглеродафракцией5-60мкмилиизпастынаосновепорошкауглеродас35-45мас.%дистиллированнойводы,илиацетона,илиэтиловогоспирта.23.Способпоп.1,отличающийсятем,чтонасыщениеповерхностивнутреннейполостилопаткиуглеродомпроводятвгазовойсредесуглеродсодержащимгазом,напримерметаном,притемпературе900-1000°Свтечение2-6ч.3
Источник поступления информации: Роспатент

Showing 111-120 of 354 items.
12.01.2017
№217.015.57c5

Панель из полимерного композиционного материала с молниезащитным покрытием

Изобретение относится к области авиационной техники и касается диагностики механических свойств конструкций летательного аппарата, выполненных из полимерных композиционных материалов (ПКМ), в частности касается защиты от поражения молнией. Панель из ПКМ содержит обшивку, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002588552
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5915

Титанополимерный слоистый материал и изделие, выполненное из него

Изобретение относится к материалам авиастроительной промышленности и может быть использовано для изготовления деталей и элементов конструкционного назначения. Титанополимерный слоистый материал включает, по меньшей мере, два слоя листов титанового сплава и слой углепластика между ними,...
Тип: Изобретение
Номер охранного документа: 0002588224
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5b67

Способ определения критической длины трещины для нахождения вязкости разрушения

Изобретение относится к исследованию прочностных свойств материалов и может быть использовано для определения вязкости разрушения металлов. Сущность: осуществляют статическое нагружение плоского образца с выращенной трещиной усталости и регистрацию длины трещины в момент перехода от стабильного...
Тип: Изобретение
Номер охранного документа: 0002589523
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e2f

Теплостойкое эпоксидное связующее для изготовления изделий методом пропитки под давлением

Изобретение относится к теплостойким эпоксидным связующим для изготовления методом пропитки под давлением изделий из полимерных композиционных материалов, применяемых в авиакосмической технике. Связующее содержит, мас.%: эпоксидную полифункциональную смолу...
Тип: Изобретение
Номер охранного документа: 0002590563
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f9c

Способ удаления покрытия с металлической подложки

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении при ремонте лопаток и других деталей турбин. Способ включает обработку в электролите, содержащем неорганическую аммонийную соль и добавку водорастворимого вещества, при этом...
Тип: Изобретение
Номер охранного документа: 0002590457
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.62ed

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе интерметаллида NiAl, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей горячего тракта газотурбинных двигателей авиационной промышленности....
Тип: Изобретение
Номер охранного документа: 0002588949
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.678a

Сплав с высокотемпературным эффектом памяти формы

Изобретение относится к области металлургии, а именно к сплавам на основе железа, обладающим высокотемпературным эффектом памяти формы, и может быть использовано для изготовления высокотемпературных термочувствительных элементов изделий, применяемых в авиационной и атомной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002591933
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68ff

Способ получения износостойкого покрытия

Изобретение относится к области металлургии, а именно к способам получения покрытий с использованием магнетронного распыления металлов, и может быть использовано для получения износостойких покрытий металлических деталей трения, в частности для компрессора газотурбинных двигателей и установок....
Тип: Изобретение
Номер охранного документа: 0002591932
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.69be

Теплостойкая клеевая композиция

Изобретение относится к области теплостойких клеевых композиций холодного отверждения. Термостойкая клеевая композиция холодного отверждения по изобретению включает эпоксикремнийорганическую смолу и смесь изомеров γ- и β-аминопропилтриэтоксисилана и трис-[2,4,6-(диметиламинометил)фенол]. При...
Тип: Изобретение
Номер охранного документа: 0002591961
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6c82

Жаропрочный сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к созданию жаропрочных сплавов на основе титана, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов и деталей. Жаропрочный сплав на основе титана содержит, мас.%: алюминий 10,5-12,5; ниобий 38,5-42,0; молибден...
Тип: Изобретение
Номер охранного документа: 0002592657
Дата охранного документа: 27.07.2016
Showing 21-23 of 23 items.
09.06.2019
№219.017.7a23

Установка для нанесения защитных покрытий

Изобретение относится к установке для нанесения защитных покрытий и может найти применение для получения защитных покрытий на изделиях авиационной техники. Для повышения качества покрытий за счет устранения их остаточной пористости и расширения технологических возможностей установки при...
Тип: Изобретение
Номер охранного документа: 0002318078
Дата охранного документа: 27.02.2008
09.06.2019
№219.017.7dba

Способ защиты деталей газовых турбин из никелевых сплавов

Изобретение относится к области металлургии и машиностроения и может быть использовано в авиационном и энергетическом турбостроении для защиты деталей от высокотемпературного окисления, в том числе рабочих и сопловых лопаток газовых турбин из никелевых сплавов. Предложен способ защиты деталей...
Тип: Изобретение
Номер охранного документа: 0002452793
Дата охранного документа: 10.06.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
+ добавить свой РИД