×
19.04.2019
219.017.2dc0

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ СТАЛЬНЫХ ДЕТАЛЕЙ МАШИН ОТ СОЛЕВОЙ КОРРОЗИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали первого слоя конденсированного покрытия из сплава на основе никеля, содержащего кобальт, хром, алюминий, иттрий, и второго слоя покрытия, который получают последовательным нанесением шликерных слоев - силикатного, фосфатного и вновь силикатного, после нанесения каждого из слоев проводят его сушку и термообработку при температуре 350-450°С в течение 5-20 минут. Способ позволяет создать стойкое к солевой коррозии покрытие, не снижающее механические характеристики деталей машин из сталей, имеющих температуру отпуска ниже 600°С. 4 з.п. ф-лы, 1 табл.

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из конструкционных сталей от солевой коррозии.

Известен способ получения металлостеклокерамического покрытия Дифа-СФ на стальной лопатке компрессора, включающий в себя насыщения поверхности лопатки алюминием при температуре 600-620°С в порошковой смеси, содержащей мелкодисперсную алюминиевую пудру, последующее нанесение внешнего стеклокерамического слоя из водных силикатных и фосфатно-бихроматных растворов и термическую обработку лопатки при температурах 400-600°С (см. Иванов Е.Г., Шкурат А.С. Механизм повышения жаростойкости и сопротивляемости электрохимической коррозии стальных лопаток компрессора ГТД с металлостеклокерамическим покрытием Дифа-СФ. - В кн.: Получение и применение защитных покрытий. - Л.: Наука, 1987, с.164-167).

Известен также способ обработки поверхности металлического изделия, в котором для повышения коррозионной стойкости используют накопление и диффузию на поверхности изделия сплава на основе алюминия из плазмы этого сплава и последующую термообработку при 600-620°С, в течение 4-6 ч (патент РФ №2241067).

Недостатком известных способов является большая трудоемкость получения покрытия (для ДИФА-СФ ˜48 ч) и необходимость проведения длительного диффузионного насыщения в смесях, содержащих мелкодисперсный и взрывоопасный порошок из алюминия, что ограничивает, а в ряде случаев сдерживает применение известного способа получения ДИФА-СФ в промышленности, а также то, что процесс термообработки после насыщения поверхности изделия в плазме сплава на основе алюминия проводят при температурах (600-620)°С, и эта температура выше температуры отпуска материала для большинства ответственных деталей машин.

Наиболее близким аналогом, взятым за прототип, является способ защиты стальных деталей машин от солевой коррозии, включающий последовательное осаждение в вакууме первого слоя конденсированного покрытия из сплава на основе никеля, содержащего, мас.%: 16-30 кобальта, 16-28 хрома, 8-13,5 алюминия и 0,05-0,6 иттрия, последующее осаждение второго слоя из сплава на основе алюминия и термическую обработку при температуре 580-620°С в течение 4-6 ч (Патент РФ №2165475).

Недостатком известного способа является относительно высокая температура термообработки детали с покрытием (580-620)°С и длительность термообработки 4-6 часов, не позволяющая использовать данное покрытие для стальных деталей, имеющих температуру отпуска <600°С, что ограничивает область применения известного способа в промышленности.

Технической задачей настоящего изобретения является создание покрытия, стойкого к солевой коррозии и не снижающего механические характеристики деталей машин из сталей, имеющих температуру отпуска ниже 600°С.

Это достигается тем, что в способе защиты стальных деталей машин от солевой коррозии, преимущественно деталей компрессора газотурбинного двигателя, включающем последовательное нанесение на поверхность детали первого слоя конденсированного покрытия из сплава на основе никеля, содержащего кобальт, хром, алюминий, иттрий, последующее нанесение второго слоя и термообработку, второй слой покрытия получают последовательным нанесением шликерных слоев - силикатного, фосфатного и вновь силикатного, после нанесения каждого из шликерных слоев проводят его сушку и термообработку при температуре (350-450)°С в течение 5-20 минут.

Силикатные слои наносят из водного раствора жидкого стекла с плотностью 1,05-1,07 г/см3.

Фосфатный слой наносят из шликера на основе водного раствора алюмохромофосфатного связующего с плотностью 1,05-1,07 г/см3.

В шликер на основе водного раствора алюмохромофосфатного связующего дополнительно вводят до 8 мас.% хромового ангидрида при сохранении его плотности (1,05-1,07) г/см3.

Сушку шликерных слоев проводят на воздухе, а затем при температуре 150-250°С в течение 15-25 минут.

Использование в качестве первого слоя покрытия конденсированного покрытия из сплава на основе никеля, содержащего кобальт, хром, алюминий, иттрий, а второго слоя покрытия - трех последовательно нанесенных шликерных слоев (силикатного, фосфатного и силикатного слоев), сушка и термообработка каждого шликерного слоя, проводимая при температуре (350-450)°С в течение 5-20 минут, обеспечивают закрытие незначительной пористости первого слоя конденсированного покрытия за счет пропитки поверхности этого слоя покрытия из первого шликерного силикатного слоя и формирования на поверхности детали сплошного металлокерамического покрытия из сплава системы Ni-Co-Cr-Al-Y и силикофосфатного покрытия, обладающего высокой коррозионной стойкостью в условиях солевой коррозии. Предварительная сушка каждого из шликерных слоев и термообработка после нанесения каждого из этих слоев при температуре (350-450)°С в течение 5-20 минут обеспечивают нагрев шликерных слоев до температуры их «стеклования» и предохраняют материал детали от нагрева его до температуры отпуска, чем и достигается цель изобретения, т.е. получение коррозионно-стойкого покрытия на поверхности стальной детали при температуре материала детали ниже температуры ее отпуска.

Плотность 1,05-1,07 г/см3 силикатного и фосфатного растворов обеспечивает качественное нанесение шликера кистью, окунанием и распылением на поверхность первого слоя покрытия. Использование до 8 мас.% хромового ангидрида в шликере для нанесения фосфатного слоя обеспечивает возможность более длительного хранения фосфатного шликера при его использовании в производстве, однако экологически небезопасно. Содержание хромового ангидрида в АХФС ограничивается 8 мас.% ввиду недопустимости большого содержания в растворе шликера шестивалентного хрома. При этом содержание хромового ангидрида более 8% не дает прибавки по защитным свойствам покрытия.

Сущность изобретения поясняется следующим примером.

На детали компрессора ГТД (призонные болты, шпильки) и образцы из стали 30Х13 с температурой отпуска 300°С, обладающие низкой коррозионной стойкостью при рабочей температуре деталей <300°С, ионно-плазменным методом наносили конденсированный слой из никелевого сплава, содержащего 22% Со, 22% Cr, 12% Al и 0,3% Y, толщиной 5 мкм. Затем с помощью шликерной технологии на образцы и детали наносили второй слой покрытия, состоящий из силикатного, фосфатного и силикатного слоев. Силикатные слои наносили при помощи пневматического распылителя из водного раствора жидкого стекла (Na2SiO3, с силикатным модулем 2,6-3,2) плотностью 1,05-1,07 г/см3. Фосфатный слой покрытия наносили методом окунания из шликера с плотностью 1,05-1,07 г/см3 на основе водного раствора алюмохромофосфатного связующего (связующее АХФС, ТУ 2149-150-10964029-01). В примере 3 в водный раствор АХФС дополнительно вводят 8 мас.% хромового ангидрида. После нанесения каждого из слоев слои подвергали сушке при комнатной температуре или в потоке теплого воздуха с температурой 40-60°С, а затем при температуре 200°С в течение 20 минут. После сушки каждого шликерного слоя часть образцов и деталей подвергали термической обработке при температуре 350°С в течение 20 минут, другую часть при 400°С в течение 12,5 минут, а последнюю часть образцов и деталей термообрабатывали при 450°С в течение 5 минут. Температуру и время термической обработки выбрали, исходя из условия прогрева материала деталей и образцов из стали 30Х13 до температуры <300°С. Полученные детали и образцы с коррозионно-стойким металлокерамическим покрытием были испытаны в лабораторных условиях.

Для сравнения на образцы из стали 30Х13 было нанесено покрытие по способу-прототипу.

Коррозионную стойкость деталей и образцов с покрытием исследовали по методике ускоренных циклических испытаний на плоских образцах 20×30×1,5 мм по режиму: нагрев до температуры 300°С и выдержка 1 ч, подстуживание на воздухе 2 минуты, охлаждение в 3% растворе NaCl, выдержка в течение 22-24 часов во влажной камере. Отметим, что удовлетворительной коррозионной стойкостью считается 10 циклов испытаний без коррозионного повреждения.

Из результатов лабораторных исследований видно, что сплав с двухслойным покрытием при ускоренных циклических испытаниях на солевую коррозию обладает высокой коррозионной стойкостью, заметно большей, чем сталь 30Х13 без покрытия (см. таблицу). В таблице приведены усредненные данные по 5 образцам на каждый вид покрытия. Одновременно образцы из стали с покрытием и без покрытия испытывались на прочность, полученные данные в относительных единицах приведены в таблице.

Аналогичные результаты были получены при защите образцов и деталей из сталей 38Х2МЮА и 95Х18. Исследования показали, что покрытие, полученное по предлагаемому способу, не оказывает влияния на механические характеристики сталей.

Вид образцаЧисло циклов до появления очагов коррозииКратковременная прочность, %
1Сталь без покрытия3100
2Сталь с покрытием. Термообработка 350°С, 20 мин18100
3Сталь с покрытием. Термообработка 400°С, 12,5 мин19100
4Сталь с покрытием. Термообработка 450°С, 5 мин18100
5Сталь с покрытием, полученным по способу-прототипу1845

Детали сопряжения, применяемые в газотурбинных двигателях (ГТД), имеют повышенную точность, и толщина защитных покрытий для этих деталей ограничена величиной до 10-12 мкм. Однослойное покрытие из сплава системы Ni-Co-Cr-Al-Y не обеспечивает защиты стальных деталей ГТД ввиду незначительной пористости (0,1-0,2)%. Применение второго слоя покрытия на основе силикатного, фосфатного и силикатного слоев устраняет незначительную пористость первого слоя покрытия и в целом позволяет сформировать на поверхности детали металлокерамическое покрытие, обладающее высокой коррозионной стойкостью. Шликеры на основе водных растворов с плотностью 1,05-1,07 г/см3 обеспечивают получение качественных (сплошных) покрытий (пленок) минимальной толщины, а использование фосфатного покрытия с добавкой хромового ангидрида обеспечивает возможность хранения готового шликера в течение нескольких суток, что важно в условиях серийного производства. Отсутствие в фосфатном покрытии хромового ангидрида несколько снижает защитные свойства покрытия и срок хранения фосфатного шликера, но зато обеспечивает максимальную экологическую безопасность шликера. Максимальная концентрация хромового ангидрида ограничена 8% ввиду большого содержания в растворе шликера шестивалентного хрома. Термообработка шликерных покрытий второго слоя покрытия в течение 5-20 минут при температуре (350-450)°С позволяет получать качественное металлокерамическое покрытие, обеспечивающее защиту детали от солевой коррозии.

В целом предлагаемый способ защиты стальных деталей от солевой коррозии обеспечивает защиту поверхности деталей при минимальной толщине двухслойного покрытия 7-8 мкм. Поэтому при ограниченной толщине 4-5 мкм первого слоя покрытия и толщине 3-4 мкм второго слоя покрытия оно гарантировано обеспечивает защиту деталей из конструкционных сталей с низкой температурой отпуска (600°С и менее).

Испытания покрытия, полученного в соответствии с предлагаемым техническим решением, на деталях соединения вала ротора турбины низкого давления с ротором вентилятора газотурбинного двигателя из сталей 30Х13 и 38Х2МЮА показали, что новый способ позволит увеличить ресурс деталей с низкой температурой отпуска более чем в три раза по сравнению с деталями без покрытия. Это даст в совокупности значительный экономический эффект. В настоящее время детали, обработанные по предлагаемому способу, проходят испытания в составе газотурбинного двигателя.

1.Способзащитыстальныхдеталеймашинотсолевойкоррозии,преимущественнодеталейкомпрессорагазотурбинногодвигателя,включающийпоследовательноенанесениенаповерхностьдеталипервогослояконденсированногопокрытияизсплаванаосновеникеля,содержащегокобальт,хром,алюминий,иттрий,нанесениевторогослояпокрытияитермообработку,отличающийсятем,чтовторойслойпокрытияполучаютпоследовательнымнанесениемсиликатного,фосфатногоивновьсиликатногошликерныхслоев,посленанесениякаждогоизкоторыхпроводятсушкуитермообработкупритемпературе350-450°Свтечение5-20мин.12.Способпоп.1,отличающийсятем,чтосиликатныеслоинаносятизводногорастворажидкогостекласплотностью1,05-1,07г/см.23.Способпоп.1,отличающийсятем,чтофосфатныйслойнаносятизшликеранаосновеводногораствораалюмохромофосфатногосвязующегосплотностью1,05-1,07г/см.34.Способпоп.3,отличающийсятем,чтовшликернаосновеводногораствораалюмохромофосфатногосвязующегодополнительновводятдо8мас.%хромовогоангидридаприсохраненииегоплотности1,05-1,07г/см.45.Способпоп.1,отличающийсятем,чтосушкушликерныхслоевпроводятнавоздухе,азатемпритемпературе150-250°Свтечение15-25мин.5
Источник поступления информации: Роспатент

Showing 101-110 of 354 items.
10.04.2016
№216.015.2c76

Способ получения деталей из жаропрочного сплава на основе ниобия с направленной композиционной структурой

Изобретение относится к литейному производству. Шихтовую заготовку размещают в керамической форме или тигле, помещают в нижнюю область зоны нагрева двухзонной печи подогрева форм и нагревают в атмосфере инертного газа. При достижении расплавом температуры на 160-250°С выше температуры солидус...
Тип: Изобретение
Номер охранного документа: 0002579853
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.351f

Защитное технологическое покрытие

Изобретение относится к защитным покрытиям от окисления. Техническим результатом изобретения является повышение жаростойкости, вязкости, понижение значений удельного давления и коэффициента трения покрытия при температурах нагрева штамповок до 1400°C. Защитное технологическое покрытие содержит,...
Тип: Изобретение
Номер охранного документа: 0002581425
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3a32

Многослойное полимерное пленочное покрытие

Изобретение относится к области создания многослойных полимерных пленочных покрытий для применения в составе изделий из полимерных композиционных материалов (ПКМ), в том числе, когда формирование полимерного покрытия и изделия из ПКМ происходит за один технологический цикл, а также для...
Тип: Изобретение
Номер охранного документа: 0002583009
Дата охранного документа: 27.04.2016
27.05.2016
№216.015.423d

Эпоксидное связующее, препрег на его основе и изделие, выполненное из него

Изобретение относится к области создания эпоксидных связующих для термостойких полимерных композиционных материалов на основе волокнистых наполнителей, которые могут быть использованы в авиационной, машино-, авто-, судостроительной промышленности. Эпоксидное связующее включает, масс. %:...
Тип: Изобретение
Номер охранного документа: 0002585638
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4463

Способ получения слоистого пластика

Изобретение относится к области изготовления слоистых пластиков, которые могут быть использованы в авиа- и судостроении. Способ получения слоистого пластика заключается в получении связующего, модифицированного углеродными нанотрубками посредством совместного диспергирования углеродных...
Тип: Изобретение
Номер охранного документа: 0002586149
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.465a

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к интерметаллидным сплавам на основе титана, предназначенным для изготовления деталей газотурбинного двигателя таких, как лопатки, диски, корпуса и проставки, работающие при повышенных температурах. Сплав на основе титана содержит, мас.%: Al...
Тип: Изобретение
Номер охранного документа: 0002586947
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4887

Устройство для получения отливок лопаток турбин

Изобретение может быть использовано для литья лопаток из жаропрочных сплавов с монокристаллической структурой. Устройство представляет собой керамическую форму, имеющую рабочие полости 1 лопаток, стартовые 2 и раздельные затравочные полости с затравками 3. Количество стартовых и затравочных...
Тип: Изобретение
Номер охранного документа: 0002587116
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4edc

Способ высокотемпературной термомеханической обработки полуфабрикатов из (α+β) титановых сплавов

Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке полуфабрикатов из титановых сплавов, и может быть использовано в авиакосмической технике. Способ высокотемпературной термомеханической обработки полуфабрикатов из (α+β) - титановых сплавов...
Тип: Изобретение
Номер охранного документа: 0002595079
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f62

Способ получения жаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе ниобия, которые могут быть использованы для изготовления рабочих лопаток ГТД. Способ получения высокотемпературного сплава на основе ниобия включает изготовление расходуемого электрода, плавку...
Тип: Изобретение
Номер охранного документа: 0002595084
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4fe1

Композиционный слоистый материал с комплексной системой антикоррозионной защиты

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала с комплексной системой антикоррозионной защиты. Материал содержит чередующиеся друг с другом по меньшей мере один слой...
Тип: Изобретение
Номер охранного документа: 0002595684
Дата охранного документа: 27.08.2016
Showing 21-23 of 23 items.
09.06.2019
№219.017.7a23

Установка для нанесения защитных покрытий

Изобретение относится к установке для нанесения защитных покрытий и может найти применение для получения защитных покрытий на изделиях авиационной техники. Для повышения качества покрытий за счет устранения их остаточной пористости и расширения технологических возможностей установки при...
Тип: Изобретение
Номер охранного документа: 0002318078
Дата охранного документа: 27.02.2008
09.06.2019
№219.017.7dba

Способ защиты деталей газовых турбин из никелевых сплавов

Изобретение относится к области металлургии и машиностроения и может быть использовано в авиационном и энергетическом турбостроении для защиты деталей от высокотемпературного окисления, в том числе рабочих и сопловых лопаток газовых турбин из никелевых сплавов. Предложен способ защиты деталей...
Тип: Изобретение
Номер охранного документа: 0002452793
Дата охранного документа: 10.06.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
+ добавить свой РИД