×
19.04.2019
219.017.1d4c

Результат интеллектуальной деятельности: АВИАЦИОННЫЙ ДВИГАТЕЛЬ С УСТАНОВКОЙ ДИФФУЗОРА ПОД АЗИМУТАЛЬНЫМ УГЛОМ ОТНОСИТЕЛЬНО КАМЕРЫ СГОРАНИЯ

Вид РИД

Изобретение

№ охранного документа
0002685164
Дата охранного документа
16.04.2019
Аннотация: Предметом изобретения является авиационный двигатель с установкой диффузора под азимутальным углом между диффузором и камерой сгорания. Неподвижные лопатки (15) диффузора (14) установлены под азимутальным углом (α) относительно форсунок (9) камеры сгорания так, что траектории (35), ведущие от задних кромок (34), проходят через зазоры (38) между форсунками (9) и более предпочтительно посредине между ними, так что те части потока, которые могут содержать конденсированную воду, не влияют на инициирование горения. Другими словами, угловое положение лопаток диффузора задано таким образом, чтобы ограничить накопление воды перед форсунками и обеспечить получение ими более сухого воздуха при одновременной концентрации воды и обеспечении возможности ее прохода между форсунками, в результате чего она не будет вредить горению. 5 з.п. ф-лы, 3 ил.

Предметом данного изобретения является авиационный двигатель с установкой диффузора под азимутальным углом между диффузором и камерой сгорания.

Рассматриваемые диффузоры расположены в газовом тракте между компрессорами и камерой сгорания, и они состоят из одного или нескольких кругов из неподвижных лопаток, которые изменяют поток газов, выходящих из компрессора, за счет создания препятствия для газов посредством криволинейных и вогнутых внутренних поверхностей перед обеспечением возможности поступления газов в камеру сгорания. Камеры сгорания описаны в документах FR-2 881 813-A и FR-2 905 166-A. Имеются диффузоры, лишенные отмеченной способности изменять поток, лопатки которых являются аксиальными и прямолинейными (FR-2 616 890-A и GB-700 688-А).

В данном случае интерес состоит в предотвращении случайного прекращения горения в камере сгорания после попадания воды в двигатель. Данное попадание воды на любой фазе в авиационных двигателях может происходить по различным причинам, включая полет при плохих метеоусловиях (при дожде, граде, снеге, тумане или облаках), высокой влажности окружающей среды или сильных потоках воды при взлете посредством колес (самолет) или посредством несущего винта (вертолет). Это может привести к существенным изменениям условий работы машины, нарушению горения или его полному предотвращению за счет гашения огня в камере. Прекращение горения может быть непосредственным, когда большое количество воды внезапно поступает в камеру сгорания, или постепенным, когда температура газов понемногу уменьшается и горение происходит все хуже и хуже.

Среди мер, принимаемых для противодействия данным затруднениям, предполагался забор воздуха в компрессорах для отвода части воздуха, нагруженного водой за счет центрифугирования, обеспечиваемого компрессорами, снаружи тракта и предотвращения его поступления в камеру сгорания. Данный забор, тем не менее, не всегда является достаточным и, кроме того, не предусмотрен на всех двигателях. Другое средство на практике состоит в обеспечении протекания воды по обтекателю, закрывающему нижнюю часть камеры сгорания и расположенному перед диффузором. Однако такой обтекатель также не всегда присутствует на всех двигателях, и может быть затруднено обеспечение оптимизации, если он добавлен, поскольку имеются много параметров, которые следует принимать во внимание. В любом случае он должен быть перфорированным или для обеспечения возможности поступления сжатого газа в камеру сгорания между форсунками, или для обеспечения других функций: следовательно, его эффективность является сомнительной в отношении защиты от воды и влаги.

В данном документе предусмотрено другое решение для преодоления данной проблемы: в данном документе рассматривается введение установки лопаток диффузора под азимутальным углом относительно форсунок. Другими словами, угловое положение лопаток диффузора задано таким образом, чтобы ограничить накопление воды перед форсунками и обеспечить получение ими более сухого воздуха при одновременной концентрации воды и обеспечении возможности ее прохода между форсунками, в результате чего она не будет вредить горению.

Резюмируя, можно отметить, что изобретение относится к авиационному двигателю, содержащему газовый тракт, камеру сгорания, расположенную в данном тракте, и диффузор, также расположенный в данном тракте перед камерой сгорания по ходу потока. Диффузор состоит из неподвижных лопаток, изменяющих поток и расположенных по кругу. Камера сгорания содержит топливные форсунки, которые имеют отверстия для впрыска, расположенные по кругу, коаксиальному с кругом из лопаток. Он отличается тем, что лопатки расположены под углом относительно форсунок таким образом, что траектории потока, проходящие от задних кромок лопаток, заканчиваются между форсунками, предпочтительно на средней трети угловых расстояний между форсунками и еще более предпочтительно - на середине углового расстояния между инжекторами.

Диффузор часто содержит множество последовательных ступеней. В этом случае изобретение должно применяться для ступени диффузоров, которая определяет модель большей части потока дальше по ходу потока, часто для ступени, передней по ходу потока.

Изобретение базируется на том, что вода концентрируется в потоке, проходящем перед внутренними поверхностями лопаток диффузора, вследствие ее большей инерции. В этом случае должно быть предусмотрено то, что линии течения, прослеженные от задней кромки лопаток, будут тем более соответствующими для прекращения огня в камерах, когда они проходят снаружи форсунок и на подходящем угловом расстоянии между форсунками или рядом с данной серединой расстояния. В ЕР-2 123 863-А описано устройство с внутренними поверхностями лопаток диффузора, которые, если рассматривать их в целом, не имеют предпочтительной установки под азимутальным углом, что является отличительным признаком изобретения.

Изобретение теперь будет описано подробно с использованием следующих фигур:

- фиг.1 и 2 показывают камеры сгорания;

- и фиг.3 показывает изобретение в виде развернутого изображения в плоскости части кругов из лопаток и форсунок, при этом данная плоскость определяется аксиальным направлением и угловым (азимутальным) направлением машины.

Фиг.1 показывает в данном документе типовую камеру сгорания, содержащую вокруг центральной оси 1 внутренний корпус 2, наружный корпус 3, внутренний кольцевой элемент 4, наружный кольцевой элемент 5, внутренний обходной канал 6 между внутренним корпусом и внутренним кольцевым элементом 4, наружный обходной канал 7 между наружным корпусом 3 и наружным кольцевым элементом 5, камеру 8 сгорания между кольцевыми элементами 4 и 5, форсунки 9, которые открыты посредством отверстий 10 для впрыска в камеру 8 сгорания, нижнюю стенку 11 камеры, соединяющую внутренний кольцевой элемент 4 с наружным кольцевым элементом 5, но перфорированную для пропускания всех форсунок 9, диффузионную камеру 12, которая имеется между внутренним корпусом 2 и наружным корпусом 3 перед камерой 8 сгорания и нижней стенкой 11 камеры по ходу потока и через которую проходят трубы 13 для подачи топлива в форсунки 9, и диффузор 14 на входе диффузионной камеры 12, «занятый» неподвижными лопатками 15, расположенными по кругу в канале 16 для потока газов, выходящего из компрессоров 39. Обтекатели 40 в данном случае закрывают форсунки 9 от диффузора 14 от внутреннего кольцевого элемента 4 до наружного кольцевого элемента 5; их форма является куполообразной, и они выполнены с отверстиями 41, которые являются довольно широкими вокруг труб 13 и перед форсунками 9. Воздух из канала 16 частично проходит в обход камеры 8 сгорания по внутреннему 6 и наружному 7 обходным каналам и поступает в нее частично через отверстия 41, отверстия 10 и через пробитые отверстия, такие как 17 и 18, проходящие через кольцевые элементы 4 и 5 и, возможно, через обтекатель 40 для того, чтобы в соответствии с ситуацией образовывать горючую смесь с топливом, способствовать разбавлению данной смеси дальше по ходу потока или «освежить» кольцевые элементы 4 и 5 за счет отбора более холодного воздуха из обходных каналов 6 и 7, например, в соответствии с положениями данных пробитых отверстий и их наклонами; в данной области существует очень много конструкций.

Следует упомянуть другой тип камеры сгорания, называемой камерой сгорания с обратным потоком и показанной на фиг.2. Компрессор 19 в данном случае является осевым или центробежным и обеспечивает подачу в канал 20, сначала плоский и расходящийся, по которому проходит радиальный, а затем - после коленчатого патрубка 21 - кольцевой поток. Диффузор в данном случае состоит из радиальной ступени 22 диффузора, расположенной перед коленчатым патрубком 21 по ходу потока, и последующей аксиальной ступени 23 диффузора, расположенной дальше по ходу потока. При выходе из аксиального диффузора 23 проход воздуха заканчивается в диффузионной камере 24 перед обходом переднего по ходу потока, кольцевого элемента 25 с одной стороны или с другой, в аксиальном направлении дальше по ходу потока по первому обходному каналу 26 или в радиальном направлении снаружи по второму обходному каналу 27. Передний по ходу потока, кольцевой элемент 25 имеет криволинейное сечение, довольно близкое к полукругу. Камера 28 сгорания имеется между передним по ходу потока, кольцевым элементом 25 и задним по ходу потока, кольцевым элементом 29, она также является изогнутой и окружена ранее упомянутыми элементами так, что камера 28 сгорания образует обратный поток с поворотом на пол-оборота. Топливные форсунки 30 расположены в данном случае так, чтобы инициировать горение на наружном в радиальном направлении и расположенном дальше по потоку в аксиальном направлении конце камеры 28 сгорания за счет продвижения топлива по направлению к расположенной впереди по потоку стороне машины. В данном случае они не имеют никакого обтекателя, закрывающего их. Форсунки 30 также могут быть расположены на кольцевом элементе 25, переднем по ходу потока. Газообразные продукты сгорания проходят вдоль камеры 28 сгорания, выполняя половину оборота в радиальном направлении внутрь и в аксиальном направлении по ходу потока, перед выходом из нее через распределитель 31, состоящий из неподвижных лопаток, чтобы газообразные продукты сгорания дошли до турбин 32. Воздух входит в камеру 28 сгорания через различные перфорации и отверстия так же, как в другой конструкции. Во всех конструкциях диффузоры 14, 22 и 23, как и инжекторы 9 и 30, расположены по кругам, коаксиальным относительно оси 1 или 33 машины.

Делается ссылка на фиг.3 для разъяснения изобретения с использованием ссылки на фиг.1, хотя изобретение может быть распространено на другие камеры сгорания, в частности, на камеру сгорания по фиг.2, как будет раскрыто ниже. Поток в диффузионной камере 12 образован в угловом направлении за счет формы неподвижных лопаток 15 и, в частности, их наклона относительно задней кромки 34. Капли воды имеют осевые составляющие скорости, что заставляет их проходить по траекториям 35, которые являются приблизительно касательными к данному наклону в диффузионной камере 12. Некоторые имеют радиальную составляющую скорости, которая является достаточной для обхода камеры 8 сгорания за счет того, что она достаточно изменена воздушными потоками, но самая большая часть переносится за счет инерции по направлению к камере 8 сгорания, при этом, следовательно, капли воды смогут достигать форсунок 9 через отверстия 41, даже когда обтекатель 40 отсутствует, и появляется риск прекращения горения в камере 8 сгорания, при этом, кроме того, влага также сможет входить в нее через пробитые отверстия 17 и 18. Следует отметить, что вода будет концентрироваться рядом с внутренней вогнутой поверхностью 36 неподвижных лопаток 15 вследствие ее инерции; она будет с гораздо большей «готовностью» следовать по траекториям 35 и через зоны вблизи них.

В соответствии с изобретением неподвижные лопатки 15 расположены таким образом, что траектории 35 будут проходить на расстоянии от форсунок 9, между ними, предпочтительно в средней трети 37 зазоров 38 между ними и еще более предпочтительно - в середине данных зазоров 38; если угловой шаг форсунок 9 равен γ, и угол траекторий 35 между задними кромками 34 и форсунками 9 равен β, азимутальный угол α установки, то есть угол между задними кромками 34 и форсунками 9, в лучшем случае должен быть выбран таким, чтобы α+β=γ/2.

Ситуация является точно такой же для камеры с обратным потоком, как в случае фиг.2, с учетом того, что траектории 35 формируются в диффузионной камере 34 и в наружном обходном канале 26 к форсункам 30.

В том случае, когда диффузор является составным, таким как диффузор по фиг.2, критерий должен применяться для диффузора, который обеспечивает самое сильное изменение, то есть, как правило, для диффузора, который является самым передним по ходу потока, а именно радиального диффузора 22 в случае по фиг.2; если, тем не менее, расположенный дальше по ходу потока диффузор (расположенный дальше по ходу потока диффузор 23) выполняет самое сильное изменение, будет рассматриваться именно этот диффузор.

В случае необходимости траектории 35 должны быть определены посредством расчетов с использованием тестовых моделей.

При проходе рядом с форсунками 9 или 30 вода проходит вдоль камеры сгорания или полностью обходит ее перед перемещением от нее.

Применение изобретения часто будет зависеть от продуманного выбора количества лопаток диффузора и количества форсунок; данные количества часто должны обеспечивать возможность получения обычного диффузора таким образом, чтобы обеспечить возможность аналогичных размещений групп лопаток относительно каждой из форсунок. В этом случае может быть выбрано нерегулярное распределение лопаток в угловом направлении, при этом лопатки будут отсутствовать там, где траектории 35 вели бы к форсункам 30. В других типах вариантов осуществления изобретение может быть применено только в отношении определенных форсунок, которые в этом случае будут представлять собой основные форсунки, при этом другие будут иметь меньшую скорость потока. При всех форсунках, расположенных вне зоны, до которой доходят траектории 35 в соответствии с вышеизложенным, также могут быть рассмотрены нерегулярные распределения форсунок на угловых расстояниях.

Как правило, установка под азимутальным углом предполагает «согласование» между числом лопаток диффузора и числом форсунок (данные два числа имеют общий делитель). Тем не менее, имеются определенные случаи, для которых необходимость в «согласовании» отсутствует:

- в случае, в котором имеется «привилегированная» форсунка (форсунка, питаемая предпочтительно во время движения со скоростями при малых мощностях), азимутальный угол установки может быть определен относительно данной конкретной форсунки;

- в случае, в котором прекращение горения обусловлено проникновением воды через первичные отверстия, азимутальный угол установки может быть определен с использованием данных первичных отверстий. В этом случае число первичных отверстий и число лопаток должны иметь общий полный делитель.


АВИАЦИОННЫЙ ДВИГАТЕЛЬ С УСТАНОВКОЙ ДИФФУЗОРА ПОД АЗИМУТАЛЬНЫМ УГЛОМ ОТНОСИТЕЛЬНО КАМЕРЫ СГОРАНИЯ
АВИАЦИОННЫЙ ДВИГАТЕЛЬ С УСТАНОВКОЙ ДИФФУЗОРА ПОД АЗИМУТАЛЬНЫМ УГЛОМ ОТНОСИТЕЛЬНО КАМЕРЫ СГОРАНИЯ
АВИАЦИОННЫЙ ДВИГАТЕЛЬ С УСТАНОВКОЙ ДИФФУЗОРА ПОД АЗИМУТАЛЬНЫМ УГЛОМ ОТНОСИТЕЛЬНО КАМЕРЫ СГОРАНИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 63 items.
20.06.2018
№218.016.6424

Протяжка и способ протягивания пазов для деталей, таких как диски ротора турбины или диски компрессора турбомашины

Способ включает протягивание по меньшей мере одного паза (3) в детали, такой как диск (4) ротора турбины или диск компрессора турбомашины. При этом указанный паз (3) обрабатывают посредством протяжки (1), наклоненной под углом (α). Указанная протяжка (1) имеет шаг (Р) между зубьями, являющийся...
Тип: Изобретение
Номер охранного документа: 0002657967
Дата охранного документа: 18.06.2018
25.06.2018
№218.016.66b1

Гибридное устройство отключения для электрической цепи

Изобретение относится к гибридному устройству (100; 500) отключения для электрической цепи. Устройство содержит статический компонент (101; 501) отключения и электромеханический компонент отключения, при этом статический компонент (101; 501) закреплен на держателе (110; 510), содержащем...
Тип: Изобретение
Номер охранного документа: 0002658349
Дата охранного документа: 20.06.2018
10.07.2018
№218.016.6ed7

Способ контроля степени коксования на уровне прокладок при помощи вала газогенератора

Объектом изобретения является способ контроля степени коксования на уровне динамических прокладок газотурбинного двигателя. Cпособ содержит этапы, на которых: во время фазы авторотации газотурбинного двигателя измеряют скорость вращения вала газогенератора и на основании изменения во времени...
Тип: Изобретение
Номер охранного документа: 0002660739
Дата охранного документа: 09.07.2018
10.07.2018
№218.016.6f3c

Система и способ экстренного запуска газотурбинного двигателя летательного аппарата

Предложена система экстренного запуска газотурбинного двигателя, содержащая, по меньшей мере, один газогенератор на твердом ракетном топливе, электрически управляемое устройство воспламенения, вычислительное устройство, связанное с устройством воспламенения, и, по меньшей мере, два независимых...
Тип: Изобретение
Номер охранного документа: 0002660725
Дата охранного документа: 09.07.2018
12.07.2018
№218.016.700c

Контроль степени коксования на динамических уплотнениях посредством стартера

Изобретение относится к способу контроля степени коксования на динамических уплотнениях турбомашины, включающей в себя газогенератор, содержащий вращающийся вал и установленный на указанном валу форсуночный диск, форсуночный коллектор, динамические уплотнения, предназначенные для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002660989
Дата охранного документа: 11.07.2018
24.07.2018
№218.016.741a

Узел газотурбинного двигателя для измерения вибраций, действующих на лопатку во время ее вращения

Группа изобретений относится к области вращающихся лопаток, в частности к области характеризации вибраций, действию которых подвергаются такие лопатки, когда они находятся во вращении. Узел для газотурбинного двигателя содержит корпус и подвижное лопаточное колесо, вращающееся в корпусе и...
Тип: Изобретение
Номер охранного документа: 0002661990
Дата охранного документа: 23.07.2018
17.08.2018
№218.016.7c52

Исполнительная система для самолета

Исполнительная система для самолета, содержащая электромеханический исполнительный механизм (25), содержащий энергонезависимую память (60), в которой хранятся сохраняемые данные (61), включающие в себя данные (62) о конфигурации, относящиеся к указанному электромеханическому исполнительному...
Тип: Изобретение
Номер охранного документа: 0002664025
Дата охранного документа: 14.08.2018
13.10.2018
№218.016.9160

Кольцевая камера сгорания турбомашины

Изобретение относится к области камер сгорания турбомашин и, в частности, к области кольцевых камер сгорания для турбомашины и, в особенности, но не исключительно, для турбовального двигателя вертолета. Кольцевая камера сгорания для турбомашины, имеющая аксиальное направление (Х), радиальное...
Тип: Изобретение
Номер охранного документа: 0002669435
Дата охранного документа: 11.10.2018
27.10.2018
№218.016.9733

Двухканальная архитектура с избыточными линиями связи ccdl

Система управления полетом летательного аппарата содержит два блока обработки, средства двухсторонней связи между первым и вторым блоками обработки, выполненные с возможностью быть активными одновременно, аварийные средства связи, содержащие сеть датчиков или приводов и защищенную бортовую сеть...
Тип: Изобретение
Номер охранного документа: 0002670941
Дата охранного документа: 25.10.2018
09.11.2018
№218.016.9b85

Узел турбомашины для измерения вибраций, действующих на лопатку во время вращения

Изобретение относится к измерительной технике, в частности к устройству контроля вибраций узла турбомашины. Машина содержит корпус и подвижное рабочее колесо, вращающееся в корпусе. Рабочее колесо содержит по меньшей мере одну лопатку, конец которой обращен к корпусу. Конец содержит магнит,...
Тип: Изобретение
Номер охранного документа: 0002671924
Дата охранного документа: 07.11.2018
Showing 1-3 of 3 items.
13.01.2017
№217.015.7582

Способ впрыска топлива в камеру сгорания газотурбинного двигателя и система впрыска для его осуществления

Способ впрыска топлива осуществляют посредством системы воздушно-топливного смешения, имеющей геометрическую ось центральной симметрии (X′X), в камеру сгорания газотурбинного двигателя. Впрыск топлива осуществляют в системе смешения по оси (C′C), параллельной оси симметрии (X′X) этой системы и...
Тип: Изобретение
Номер охранного документа: 0002598502
Дата охранного документа: 27.09.2016
25.08.2017
№217.015.b57a

Стенка камеры сгорания

Кольцевая стенка камеры сгорания турбомашины содержит холодную сторону и горячую сторону и имеет по меньшей мере одно первичное отверстие для обеспечения возможности проникновения первого потока воздуха, проходящего на холодной стороне стенки, на горячую сторону стенки для обеспечения сгорания...
Тип: Изобретение
Номер охранного документа: 0002614305
Дата охранного документа: 24.03.2017
25.03.2020
№220.018.0f4b

Система сгорания при постоянном объеме для газотурбинного двигателя авиационного двигателя

Система (3; 46; 62) сгорания при постоянном объеме для турбомашины содержит множество камер (11-14) сгорания, равномерно распределенных вокруг продольной оси (АХ), коллектор (7; 42) для подвода сжатого воздуха, канал (4; 47) отведения, средство синхронизации для синхронизации впуска сжатого...
Тип: Изобретение
Номер охранного документа: 0002717473
Дата охранного документа: 23.03.2020
+ добавить свой РИД