×
10.04.2019
219.017.0ac2

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002193802
Дата охранного документа
27.11.2002
Аннотация: Изобретение относится к источникам видимого излучения, которые находят широкое применение в проекторах, лампах подсветки жидкокристаллических экранов, дисплеях, элементах световых табло. Техническим результатом является повышение эффективности преобразования электрической энергии в оптическое излучение при низких напряжениях, повышение надежности и технологичности конструкции. Устройство для получения оптического излучения содержит заполненную газом камеру, расположенные напротив катод, выполненный в виде полос, и анод. Поверхности, на которых расположены электроды, включая и поверхность самих электродов, покрыты слоем фотолюминофора. Расстояние L между электродами определяется из условия равенства его энергетической длине пробега электрона путем подбора давления излучающего газа и напряжения U между электродами меньшим, чем I/е, где I - потенциал ионизации атомов или молекул газа, а е - заряд электрона. Катод выполнен автоэмиссионным в виде параллельных полос, ширина d которых определяется из условия Ed=U, где Е - напряженность электрического поля вблизи поверхности катодных полос, достаточная для обеспечения необходимой автоэмиссии, а расстояние между полосами больше или равно L, при этом полоса может быть выполнена в виде нанесенной на диэлектрическую подложку металлической пленки, покрытой в свою очередь алмазно-углеродной или углеродной пленкой. 3 з.п. ф-лы, 1 ил.

Источники оптического излучения находят широкое применение в промышленности. В частности, излучение вакуумного ультрафиолетового диапазона используется для травления резисторов в микроэлектронике, для стерилизации расходных материалов, инструментов и оборудования в медицине. Источниками видимого излучения различного спектрального состава являются осветительные приборы и различного рода информационные экраны. Одним из наиболее распространенных источников оптического излучения являются газоразрядные источники. Распространены, например, люминесцентные лампы видимого диапазона, представляющие собой обычно газовый разряд в благородном газе низкой плотности с добавками ртути, ультрафиолетовое излучение которого с помощью люминофора конвертируется в видимое излучение. Тот же принцип применяется и в производстве плазменных дисплеев, где используется тот же тип разряда, но без ртути и при более высоких давлениях газа. Широта применений делает важным создание эффективного, компактного источника оптического излучения.

Известное устройство оптического излучения малого давления, например флуоресцентная газоразрядная лампа [1], имеет ряд недостатков, в частности ртутные загрязнения, возникающие при разрушении лампы.

Известно устройство для получения оптического излучения, состоящее из камеры, заполненной излучающим газом, с расположенными напротив друг друга, по крайней мере, двумя электродами, катодом и анодом, по крайней мере, один из которых выполнен прозрачным для излучения [2]. Оптическое излучение возникает в результате возбуждения газа в разряде. Недостатком устройства является низкая эффективность преобразования электрической энергии в излучение.

Целью предлагаемого изобретения является повышение эффективности преобразования электрической энергии в оптическое излучение при низких напряжениях питания при высокой надежности и технологичности конструкции.

Предлагаемое устройство оптического излучения состоит из камеры, заполненной излучающим газом, например каким-либо благородным газом, с расположенными напротив друг друга, по крайней мере, двумя электродами - катодом и анодом. По крайней мере, одна из поверхностей, на которой расположены электроды, включающая поверхность самих электродов, прозрачна для излучения газа или излучения люминофора. Расстояние между электродами L определяется из условия равенства его энергетической длине пробега электрона путем подбора давления излучающего газа и напряжения U между электродами меньшим, чем I/е, где I - потенциал ионизации атомов или молекул газа, а е - заряд электрона. Катод выполнен автоэмиссионным в виде параллельных полос, ширина которых d определяется из условия Ed= U, где Е - напряженность электрического поля вблизи поверхности катодных полос, достаточная для обеспечения необходимой автоэмиссии, а расстояние между полосами больше или равно L, при этом полоса может быть выполнена в виде нанесенной на диэлектрическую подложку металлической пленки, покрытой в свою очередь алмазно-углеродной или углеродной пленкой. Поверхности, на которых расположены электроды, прозрачные для излучения газа, включая и поверхность самих электродов, могут быть покрыты фотолюминофором с внешней стороны. При выполнении поверхностей, на которых расположены электроды, включая и поверхность самих электродов, прозрачными для излучения люминофора, они покрыты фотолюминофором с внутренней стороны.

Изобретение поясняется чертежом, на котором схематично изображено устройство для получения оптического видимого излучения, состоящее из источника питания (1), заполненной газом камеры (2), поверхностей (3), на которых расположены катод, выполненный в виде полос (4), и анод (5) и фотолюминофор (6). Полосы (4) катода должны быть выполнены из материала, который обеспечивает максимально высокую эффективность эмиссии электронов.

Для получения высокой эффективности необходимо обеспечить условия, при которых значительная часть вложенной энергии идет на возбуждение излучающих состояний газа. Этого можно добиться за счет выбора подходящего диапазона давлений газа и размеров устройства. Напряженность электрического поля у катода Е должна быть достаточно велика для появления значительного тока автоэмиссии (E ~ 2-10 В/мкм при использовании холодноэмиссионного пленочного катода). Выполнение автоэмиссионного катода в виде полос позволяет использовать условия радиального распределения напряженности электрического поля, за счет чего возможно подобрать такие расстояние между электродами, которые позволят обеспечить технологичность и надежность устройства.

Излучение, полученное за счет возбуждения частиц газа электронами, может быть выведено через прозрачные электроды или преобразовано в излучение другого диапазона за счет возбуждения излучающих состояний люминофора.

За счет подбора рабочих параметров катода ток электронов поддерживается на заданном уровне. Эти электроны дрейфуют под действием напряжения, приложенного между полосами (4) катода и анодом (5) и вызывают возбуждение ультрафиолетового излучение газа, заполняющего камеру (2), с последующим возбуждением фотолюминофора (5). Постоянное или импульсное электрическое напряжение прикладывается от источника питания (1). Рабочий диапазон напряжений может быть от нескольких до десятков вольт. Минимальное напряжение определяется величиной порога возбуждения нижнего излучающего состояния, в ксеноне это 8.5 эВ, а максимальное - условием возникновения самостоятельного разряда. Яркость источника растет с увеличением напряжения между электродами, а при фиксированном напряжении с ростом величины электрического поля в зазоре. В случае импульсного напряжения яркость также может контролироваться частотой следования импульсов и изменением длительности импульса.

Предлагаемое устройство оптического излучения будет иметь широкий диапазон применений: от медицины до высоких технологий, где необходимы источники света разного спектрального диапазона с управляемой яркостью. Возможно использование предлагаемого устройства оптического излучения в проекторах, лампах подсветки жидкокристаллических экранов, дисплеях, элементах световых табло, где необходима высокая яркость, в компактных и автономных источниках света, где возможно использование только низкого напряжения. Оно может также использоваться в любых применениях, где важно иметь источник излучения с большой апертурой.

Источники информации
1. Рохлин Г. Н. Разрядные источники света. Энергоатомиздат, 1991, стр. 392.

2. Добрецов Л.Н., Гамаюнова М.В. Эмиссионная электроника, Москва: Наука, 1966, стр. 245.

1.Устройстводляполученияоптическогоизлученияизкамеры,заполненнойизлучающимгазом,срасположенныминапротивдругдруга,покрайнеймере,двумяэлектродами,катодомианодом,приэтом,покрайнеймере,однаизповерхностей,накоторойрасположеныэлектроды,включаяповерхностьсамихэлектродов,прозрачнадляизлучения,отличающеесятем,чторасстояниеLмеждуэлектродамиопределяетсяизусловияравенстваегоэнергетическойдлинепробегаэлектронапутемподборадавленияизлучающегосягазаинапряженияUмеждуэлектродамименьшим,чемI/е,гдеI-потенциалионизацииатомовилимолекулгаза,е-зарядэлектрона,акатодвыполненавтоэмиссионнымввидепараллельныхпроводящихполос,ширинаdкоторыхопределяетсяизусловияEd=U,гдеЕ-напряженностьэлектрическогополявблизиповерхностикатодныхполос,достаточнаядляобеспеченияавтоэмиссии,арасстояниемеждуполосамибольшеилиравноL.12.Устройствопоп.1,отличающеесятем,чтополосывыполненыввиденанесеннойнадиэлектрическуюподложкуметаллическойпленки,покрытойвсвоюочередьалмазно-углероднойилиуглероднойпленкой.23.Устройствопоп.2,отличающеесятем,что,покрайнеймере,поверхность,накоторойрасположеныэлектроды,включающаяповерхностьсамихэлектродов,выполненапрозрачнойдляизлучениягазаипокрытаслоемфотолюминофорасвнешнейстороны.34.Устройствопоп.2,отличающеесятем,что,покрайнеймере,поверхность,накоторойрасположеныэлектроды,включающаяповерхностьсамихэлектродов,выполненапрозрачнойдляизлучениялюминофораипокрытаслоемфотолюминофорасвнутреннейстороны.4
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
01.03.2019
№219.016.d148

Способ получения адресуемого автоэмиссионного катода и дисплейной структуры на его основе

Предлагаемый способ получения адресуемого автоэмиссионного катода и дисплейной структуры на его основе с триодным управлением относится к области микроэлектроники. Способ заключается в нанесении эмиссионного слоя на элементы адресуемого автоэмиссионного катода методом газофазного синтеза в...
Тип: Изобретение
Номер охранного документа: 02194329
Дата охранного документа: 10.12.2002
Showing 21-26 of 26 items.
19.06.2019
№219.017.8570

Усилитель электронного потока

Изобретение относится к электронной оптике и может быть использовано в электронно-оптических преобразователях (ЭОП). Изобретение представляет усилитель электронного потока, выполненный в виде твердотельной пластины, на одну из сторон которой падает входной поток электронов, а с противоположной...
Тип: Изобретение
Номер охранного документа: 02221309
Дата охранного документа: 10.01.2004
29.06.2019
№219.017.9a27

Турбина газотурбинного двигателя

Турбина газотурбинного двигателя выполнена с опорой роликоподшипника и охлаждаемыми рабочими лопатками первой и второй ступеней, внутренние полости которых через промежуточные полости соединены трубами с выходом компрессора. Опора роликоподшипника выполнена с наклонной стенкой, к которой...
Тип: Изобретение
Номер охранного документа: 0002261350
Дата охранного документа: 27.09.2005
29.06.2019
№219.017.9b7b

Турбина газотурбинного двигателя

Турбина газотурбинного двигателя с двухступенчатым ротором включает диск первой ступени ротора, зафиксированный на радиальном фланце вала осевыми болтами, и диск второй ступени ротора, зафиксированный в осевом направлении на валу гайкой. Радиальный фланец вала размещен между дисками турбины....
Тип: Изобретение
Номер охранного документа: 02232901
Дата охранного документа: 20.07.2004
29.06.2019
№219.017.9b83

Двухконтурный газотурбинный двигатель

Двухконтурный газотурбинный двигатель с каналами наружного и внутреннего контуров содержит компрессор высокого давления с охлаждаемым радиально-упорным подшипником, камеру сгорания и турбину низкого давления с охлаждаемым радиальным подшипником. За компрессором высокого давления выполнена...
Тип: Изобретение
Номер охранного документа: 0002224905
Дата охранного документа: 27.02.2004
02.07.2019
№219.017.a38f

Тренажер для подготовки летчиков ударных вертолетов к стрельбе управляемым вооружением

Изобретение относится к системам подготовки и тренировки летчиков к пилотированию и боевому применению ударной авиации и может быть использовано для обучения стрельбе управляемым вооружением и поддержания профессионального мастерства летчиков ударных вертолетов. Сущность изобретения: в...
Тип: Изобретение
Номер охранного документа: 02219587
Дата охранного документа: 20.12.2003
10.07.2019
№219.017.ab89

Способ получения микросфер из летучей золы тепловых электростанций

Изобретение может использоваться в строительной и других отраслях промышленности, например, при производстве пластмасс и в некоторых изделиях, работающих в агрессивных средах. Способ получения микросфер из летучей золы тепловых электростанций включает гидросепарацию водной суспензии микросфер,...
Тип: Изобретение
Номер охранного документа: 02236905
Дата охранного документа: 27.09.2004
+ добавить свой РИД