×
10.04.2019
219.017.014a

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ПОДАЧЕЙ ГЛИНОЗЕМА В ЭЛЕКТРОЛИЗЕР ПРИ ПОМОЩИ ТОЧЕЧНЫХ ПИТАТЕЛЕЙ

Вид РИД

Изобретение

№ охранного документа
0002233914
Дата охранного документа
10.08.2004
Аннотация: Изобретение относится к цветной металлургии и может быть использовано для оптимизации подачи глинозема в электролизер. При управлении подачей глинозема в алюминиевый электролизер для поддержания концентрации глинозема в заданных пределах измеряют напряжение электролизера. Формируют циклы, состоящие из последовательности базового режима питания, режима недостаточного питания и режима избыточного питания ванны. Рассчитывают псевдосопротивление R и его производную по времени dR/dt на основе измерений напряжения электролизера и тока серии во всех режимах. В режиме недостаточного питания переходят к режиму избыточного питания при превышении производной dR/dt заданных значений. Устанавливают периоды автоматизированной подачи глинозема АПГ в режимах недостаточного и избыточного питания пропорционально уставке АПГ. Перемещают анодную раму только в режиме базового питания. Уставку АПГ регулируют в зависимости от продолжительности пребывания электролизера в режиме недостаточного питания. В случае превышения продолжительности недостаточного питания по сравнению с заданным значением уставку АПГ увеличивают и наоборот. Продолжительность режима избыточного питания устанавливают постоянной. Изобретение позволяет повысить производительность электролизера. 5 ил.

Изобретение относится к цветной металлургии, а именно к автоматизации электролитического способа получения алюминия, и может быть использовано для оптимизации подачи глинозема в электролизер, оснащенный точечными питателями любого типа с неизменяемой массой (или объемом) дозы.

Существует ряд способов управления электролизерами, основанных на чередовании режимов недостаточного и избыточного питания ванн глиноземом при помощи точечных питателей.

Известен способ управления электролизерами для получения алюминия, заключающийся в поддержании температурного режима электролизера путем регулирования межполюсного расстояния и концентрации глинозема в заданных пределах чередованием режимов избыточного и недостаточного питания, включающий измерение напряжения на электролизере и тока серии, расчет текущего значения приведенного напряжения и скорости его изменения во времени, сравнение вычисленных значений с заданными, при этом регулирование межполюсного расстояния проводят в момент перехода от режима избыточного питания к режиму недостаточного питания при определенных условиях. Переход от режима недостаточного питания к режиму избыточного питания осуществляют при достижении скорости изменения приведенного напряжения во времени величины больше первого порогового значения скорости изменения приведенного напряжения, определенного экспериментально, а переход от режима избыточного питания к режиму недостаточного питания осуществляют при достижении скорости изменения приведенного напряжения во времени величины меньше второго порогового значения скорости изменения приведенного напряжения, определенного экспериментально (Патент РФ №2189403, МПК С 25 С 3/20, 2002).

Недостатком известного способа управления электролизерами для получения алюминия является недостоверный выбор момента перехода из режима избыточного питания в режим базового питания по величине производной приведенного напряжения. Проблема заключается в том, что по мере насыщения электролита глиноземом величина прироста напряжения (дискретного аналога первой производной) приближается к нулю и становится сопоставимой с производной от “шума” электролизера. (Подразумевается, что процесс находится на левой ветви кривой зависимости напряжения электролизера от концентрации глинозема в электролите). В результате время пребывания электролизера в режиме избыточного питания является неопределенной величиной, что может привести к появлению осадка на подине.

Наиболее близким к заявляемому способу по технической сущности и достигаемому результату является способ управления алюминиевыми электролизерами включающий измерение напряжения на электролизере и формирование циклов трехступенчатого питания, в которых происходит изменение количества загружаемого в ванну глинозема, начиная с базового (номинального) режима, к недостаточному питанию, а после этого к избыточному питанию. Время пребывания в режиме базового питания подбирается вручную. Интервал питания лежит в районе от 60 до 70 секунд, при этом средняя скорость питания составляет около 1,4 кг/мин для каждого питателя. За этим следовал период пониженного питания (1/2 нормальной скорости питания) и без контроля напряжения. Когда напряжение электролизера поднимется достаточно, компьютер выдает команду на избыточное питание электролизера (в два раза выше нормальной скорости питания). Переход из режима избыточного питания в режим базового питания происходит в момент падения напряжения электролизера и подхода напряжения к установленной точке вновь. Компьютер выдавал команду на нормальное питание с активным контролем напряжения. Цикл таким образом завершался и затем снова повторялся с периодом нормального питания (Стратегия питания по потребности (Demand feed) алюминиевых электролизеров. К.Р.Робийар и Б.Ролофс, Light Metals 1989, стр. 269-273).

Недостатком известного прототипа является то, что в нем не в полной мере учитывается возможность спонтанного изменения массы дозы АПГ в связи с изменяющимися свойствами глинозема, использованием глинозема различных поставщиков и изменениями самого питающего устройства, вследствие его эксплуатации в экстремальных условиях процесса промышленного электролиза алюминия. С одной стороны, использованная в прототипе методика чередования режимов недостаточного и избыточного питания позволяет системе устойчиво работать даже при существенных отклонениях у ставки АПГ от оптимального значения. С другой стороны, отклонение уставки АПГ от оптимального значения отрицательно влияет на качество процесса электролиза. Заниженная (для некоторой дозы) уставка АПГ приводит к массированной загрузке в режиме избыточного питания и долгому времени пребывания электролизера в режиме недостаточного питания. Значит, диапазоны периодических изменений концентрации глинозема в электролите велики, а также существует вероятность накопления осадков глинозема на подине. Завышенная уставка АПГ приводит к короткому времени пребывания в режиме недостаточного питания. В этом случае возрастает вероятность незапланированных анодных эффектов (даже в режиме избыточного питания).

Другим недостатком способа по прототипу так же, как аналога, является то, что время пребывания электролизера в режиме избыточного питания является случайной величиной, что может привести к появлению осадка на подине или, наоборот, к анодному эффекту и к уменьшению производительности электролизера.

В основу изобретения поставлена задача повышения производительности электролизера за счет уменьшения вероятности незапланированных анодных эффектов или накопления осадка глинозема на подине, что достигается путем адаптации базовой уставки АПГ к спонтанным изменениям доз глинозема, отдаваемым в электролизер точечными питателями.

Поставленная цель достигается тем, что в способе управления подачей глинозема в алюминиевый электролизер для поддержания концентрации глинозема в заданных пределах, включающем измерение напряжения электролизера и формирование циклов, состоящих из последовательности базового режима питания, режима недостаточного питания и режима избыточного питания ванны, рассчитывают псевдосопротивление Rnc и его производную по времени dRnc/dt на основе измерений напряжения электролизера и тока серии во всех режимах, при этом в режиме недостаточного питания переходят к режиму избыточного питания при превышении производной dRnc/dt заданных значений, устанавливают периоды автоматизированной подачи глинозема АПГ в режимах недостаточного и избыточного питания пропорционально уставке АПГ и перемещают анодную раму только в режиме базового питания, при этом уставку АПГ регулируют в зависимости от продолжительности пребывания электролизера в режиме недостаточного питания: в случае превышения продолжительности недостаточного питания по сравнению с заданным значением уставку АПГ увеличивают и наоборот; при этом продолжительность режима избыточного питания устанавливают постоянной.

Сопоставительный анализ признаков заявляемого решения и признаков аналога и прототипа свидетельствует о соответствии решения критерию “новизна”.

Предлагаемый способ управления подачей глинозема в алюминиевый электролизер по сравнению с прототипом является более оперативным и надежным в работе и позволяет повысить производительность электролизера за счет существенных отличительных признаков.

Уставку АПГ в способе функционально увязали со временем пребывания электролизера в режиме недостаточного питания, т.к. время в режиме недостаточного питания зависит от степени насыщенности электролизера глиноземом, а само насыщение при прочих равных условиях зависит от массы дозы глинозема. Чем больше время пребывания в режиме недостаточного питания, тем больше устанавливается уставка АПГ и наоборот. Поскольку периоды АПГ в режиме избыточного питания и в режиме недостаточного питания связаны через соответствующие коэффициенты с уставкой АПГ, изменение уставки АПГ приведет к изменению периодов АПГ всех трех режимов, а соответственно, к изменению интенсивности питания.

Время пребывания в режиме избыточного питания принимаем равным постоянной величине. Однако это не означает, что суммарное количество глинозема, поступающее в течение режима избыточного питания, всегда будет одинаковым. Интенсивность подач и общая масса отданного в ванну глинозема в каждом из трех режимов зависит от базовой уставки АПГ, величина которой автоматически подбирается, как указано выше, исходя из времени пребывания электролизера в режиме недостаточного питания. Следовательно, чем выше уставка АПГ, тем реже будут подаваться дозы в режиме избыточного питания. В свою очередь масса глинозема, поступившего в режимах избыточного и базового питания, влияет на начальную концентрацию в режиме недостаточного питания и отражается на времени пребывания электролизера в этом режиме.

На ситуацию, конечно, влияют и эмпирические коэффициенты, увязывающие соотношение периодов АПГ в режимах избыточного и недостаточного питания с уставкой АПГ. Предполагаем, что они неизменны (как в прототипе, так и в предложенном способе).

Заявляемый способ поясняется иллюстрациями, где на фиг.1 и 2 показана диаграмма среднесуточного количества доз АПГ на разных ваннах, на фиг.3 - диаграмма работы АПГ по предлагаемому способу, на фиг.4 - динамика изменения уставки АПГ за месяц по предлагаемому способу, на фиг.5 - номограмма на основе расчетов по модели растворения глинозема в электролизерах, оснащенных точечными питателями.

Пример 1. Приведем некоторые общепринятые понятия:

- доза АПГ суммарная масса глинозема, отдаваемая в электролизер при однократной подаче глинозема со всех точечных питателей данного электролизера;

- номинальная доза АПГ - это величина, равная произведению количества точечных питателей на паспортное значение массы глинозема, выдаваемой одним точечным питателем (доза АПГ не всегда совпадает с номинальной дозой АПГ);

- период АПГ - интервал времени между подачей доз АПГ в электролизер в данном режиме;

- частота подачи доз АПГ- величина, обратная периоду АПГ;

- номинальная уставка АПГ - величина, полученная при вычислении по выражению (1):

где 1440 - количество минут в сутках,

- уставка АПГ - период АПГ в базовом режиме, задаваемый в контроллере системы управления АПГ.

Независимо от используемой системы управления точечным дозатором о величине дозы АПГ, единовременно поступающей в электролизер (со всех установленных дозаторов), можно судить по среднесуточному количеству доз и известной производительности электролизера. Опыт показывает, что доза АПГ различна как для разных электролизеров одной конструкции, оснащенных одинаковыми точечными дозаторами (фиг.1), так и для одного и того же электролизера в разные периоды времени (фиг.2).

Как видно из диаграмм на фиг.1 и 2, среднесуточное количество доз на разных ваннах может отличаться более чем в 1.5 раза. Соответственно, таким же будет диапазон вариаций массы одной дозы. На фиг.3 показана диаграмма работы точечных дозаторов одного из электролизеров С-120 корпуса №26 КрА3а, в соответствии с предложенным способом. Уставка АПГ в точке 1 выше, чем в точке 2 вследствие того, что продолжительность времени пребывания электролизера в режиме недостаточного питания в следующих циклах была ниже заданной (в данном случае заданное время пребывания электролизера в режиме недостаточного питания равно 68.8 минутам). Заданное время пребывания в режиме недостаточного питания, как и время пребывания электролизера в режиме избыточного питания определено по методике, показанной в примере 2.

На фиг.4 показана динамика изменения уставки АПГ за месяц на ванне №50 корпуса №26 КрА3а. Корректировка (или адаптация) уставки АПГ произведена автоматически системой управления на основе описанного способа. С помощью номограммы (фиг.5) можно оценить, в какой из рабочих зон находится система. Условно весь рабочий диапазон можно разбить на зоны:

1. зона с большой вероятностью накопления осадка,

2. зона нормальной работы,

3. оптимальная зона,

4. зона с большой вероятностью анодного эффекта.

Нахождение системы в той или иной зоне определяется соотношением дозы АПГ, уставки АПГ и диапазона изменений концентрации глинозема. Если уставка АПГ подобрана таким образом, что нет осадков или анодных эффектов, то можно считать, что система находится в зоне нормальной работы. В случае меняющейся дозы АПГ для формирования режима с желаемым интервалом изменения концентрации глинозема, нужно подбирать соответствующие уставки АПГ. Соотношение параметров, соответствующее оптимальному режиму, зависит от условий протекания процесса электролиза. При использовании глинозема высокого качества и с неизменными свойствами можно подобрать такую уставку АПГ, при которой система будет обеспечивать малые колебания заданной концентрации глинозема. В случае использования разнотипных глиноземов и низкой точности дозирования точечными питателями рекомендуется уставка АПГ, обеспечивающая больший диапазон изменения концентрации глинозема.

В предлагаемом способе, в случаях спонтанных изменений доз АПГ, система управления автоматически выбирает более благоприятный режим путем подстройки уставки АПГ. Способ использован в АСУТП процесса электролиза алюминия в 4 корпусах КрА3а и 9 корпусах СА3а.

Пример 2. Расчет интервала времени пребывания электролизера в режиме избыточного питания.

Расчет базовых констант режимов системы управления точечными питателями для электролизера КрА3а С120 на 125 кА при массе электролита 6500 кг.

Пусть электролизер работает с выходом по току 93%. Тогда суточная производительность электролизера

Р=0.93*0.3354*125*24=935.8 [кг]

Для производства такого количества алюминия требуется глинозема:

М=1.89·935.8=1768.7 [кг]

На электролизере установлено 3 точечных дозатора, каждый из которых имеет плановую дозу 1.5 кг. Плановая Доза АПГ=3·1.5=4.5 [кг].

Учитывая, что в сутках 1440 минут, Номинальная уставка АПГ равна:

Учитывая, однако, что фактическая Доза АПГ может отличаться от плановой, были определены среднестатистические Доза АПГ и Уставка АПГ:

Доза АПГ=5.5 6 [кг].

Уставка АПГ=7.8 [ минут].

Завышенные по сравнению с расчетными значения дозы АПГ и уставки АПГ могут быть объяснены попаданием глинозема в электролизер помимо дозаторов (например, при замене анодов и т.д.), а также отклонением характеристик самих дозаторов.

Момент выхода из режима недостаточного питания по наблюдению за изменением кривой псевдосопротивления выбран таким образом, что переход в режим избыточного питания происходит при концентрации глинозема %Аl2O3=2.5%.

В соответствии со специфическими условиями КрА3а, где приходится использовать глиноземы различных типов, принято решение поддерживать концентрацию глинозема на электролизерах с точечными питателями в пределах 2.5%-3.5%.

Расчет времени пребывания электролизера в режиме избыточного питания.

Данный расчет выполнен исходя из предположения, что концентрация глинозема в режиме избыточного питания должна повышаться с 2.5% до 3.5%.

Пусть tизбыт - время пребывания электролизера в режиме избыточного питания в минутах.

За время tизбыт на производство алюминия будет потрачено глинозема:

m= tизбыт·M/1440=tизбыт ·1768.7/1440=1.23·tизбыт [кг]

В начальный период режима избыточного питания в электролите находится глинозема:

В конечный момент режима избыточного питания в электролите находится глинозема:

С учетом потребления в электролизер должно быть введено глинозема:

Δmизбыт=227.5-162.5+1.23·tизбыт=65+1.23·tизбыт [кг]

Для этого необходимо загрузить доз АПГ:

что соответствует загруженной массе глинозема

где K1 - коэффициент, связывающий Период АПГ в режиме избыточного питания с Уставной АПГ, 5.56 кг - среднестатистическая Доза АПГ. Из последнего выражения находим соотношение:

откуда

Расчет желаемого времени пребывания в режиме недостаточного питания. После режима избыточного питания электролизер переходит в режим базового питания. Поскольку правильно подобранная уставка АПГ обеспечивает динамический баланс “ПРИХОДА” и “РАСХОДА” глинозема, достигнутая концентрация 3.5% сохраняется в течение всего периода времени пребывания в режиме базового питания. Для расчета эталонного (желаемого) времени пребывания электролизера в режиме недостаточного питания используем процедуру, аналогичную той, что описана выше.

где К2 - коэффициент, связывающий Период АПГ в режиме недостаточного питания с Уставной АПГ,

Рассчитанное таким способом время является эталонным и используется в качестве заданного. Отклонение времени недостаточного питания от заданного времени происходит в основном вследствие спонтанных изменений дозы АПГ, что приводит к смещению рабочей зоны в ту или иную сторону от оптимального режима (см. номограмму на фиг.5). Система управления, работающая в соответствии с предложенным способом, корректирует Уставку АПГ так, что это в конечном итоге приводит к изменению времени пребывания электролизера в режиме недостаточного питания. Корректировка (или адаптация) уставки осуществляется постепенно, т.к. время пребывания в режиме недостаточного питания может зависеть от случайных и несистематических вмешательств в работу электролизера. Следует отметить, что изменение заданного времени недостаточного питания от расчетной величины 68.8 мин оставляет систему работоспособной и лишь приводит к изменению средней концентрации глинозема в электролите.

Способуправленияподачейглиноземавалюминиевыйэлектролизердляподдержанияконцентрацииглиноземавзаданныхпределах,включающийизмерениенапряженияэлектролизераиформированиециклов,состоящихизпоследовательностибазовогорежимапитания,режиманедостаточногопитанияирежимаизбыточногопитанияванны,отличающийсятем,чторассчитываютпсевдосопротивлениеRиегопроизводнуюповремениdR/dtнаосновеизмеренийнапряженияэлектролизераитокасериивовсехрежимах,приэтомврежименедостаточногопитанияпереходяткрежимуизбыточногопитанияприпревышениипроизводнойdR/dtзаданныхзначений,устанавливаютпериодыавтоматизированнойподачиглиноземаАПГврежимахнедостаточногоиизбыточногопитанияпропорциональноуставкеАПГ,иперемещаютаноднуюрамутольковрежимебазовогопитания,приэтомуставкуАПГрегулируютвзависимостиотпродолжительностипребыванияэлектролизераврежименедостаточногопитания,вслучаепревышенияпродолжительностинедостаточногопитанияпосравнениюсзаданнымзначениемуставкуАПГувеличивают,инаоборот,апродолжительностьрежимаизбыточногопитанияустанавливаютпостоянной.
Источник поступления информации: Роспатент

Showing 1-10 of 18 items.
20.02.2019
№219.016.bd86

Машина для загрузки анодной массы

Машина предназначена для транспортировки и загрузки анодной массы в электролизер для производства алюминия. На самоходном шасси размещены бункер и транспортирующие горизонтальный и наклонный шнеки. На валу горизонтального шнека установлен шнековый дозатор для подачи анодной массы из бункера....
Тип: Изобретение
Номер охранного документа: 0002255145
Дата охранного документа: 27.06.2005
29.03.2019
№219.016.eea4

Способ очистки регенерационного криолита от сульфата натрия

Изобретение относится к способам очистки регенерационного криолита от сульфата натрия. Способ включает загрузку криолита в промывную воду, отмывку при перемешивании и обезвоживание отмытого продукта. Отмывку проводят до остаточного содержания сульфата натрия в отмытом криолите 45-65% от его...
Тип: Изобретение
Номер охранного документа: 0002274606
Дата охранного документа: 20.04.2006
29.03.2019
№219.016.ef42

Ошиновка модульная мощных электролизеров для производства алюминия

Изобретение относится к производству алюминия методом электролиза расплавленных криолитовых солей в электролизерах при двухрядном поперечном расположении их в корпусе электролиза, в частности к ошиновке электролизера. В ошиновке электролизера, содержащей анодную ошиновку, соединенную с анодами...
Тип: Изобретение
Номер охранного документа: 0002288976
Дата охранного документа: 10.12.2006
29.03.2019
№219.016.ef48

Электролит для получения алюминия

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземного расплава. Технический результат заключается в интенсификации процесса получения алюминия, повышении его технико-экономических показателей, увеличении срока службы электролизера,...
Тип: Изобретение
Номер охранного документа: 0002288977
Дата охранного документа: 10.12.2006
29.03.2019
№219.016.f000

Способ управления алюминиевым электролизером при изменении скорости растворения глинозема

Изобретение относится к цветной металлургии и может быть использовано для управления процессом получения алюминия из глинозема электролитическим методом. Причины, препятствующие получению технического результата при использовании существующих способов, состоят в том, что в алгоритме не...
Тип: Изобретение
Номер охранного документа: 0002255149
Дата охранного документа: 27.06.2005
10.04.2019
№219.016.ff4a

Силовой гидравлический блок питания мобильной машины

Блок питания относится к машиностроительной гидравлике и может быть использовано в гидросистемах мобильных машин. Предлагаемый гидравлический блок питания мобильной машины содержит регулируемый насос, коллектор нагнетания которого сообщен с напорным трубопроводом для подачи рабочей жидкости к...
Тип: Изобретение
Номер охранного документа: 0002277188
Дата охранного документа: 27.05.2006
10.04.2019
№219.016.ff75

Катодная футеровка алюминиевого электролизера

Изобретение относится к алюминиевым электролизерам, в частности к катодной футеровке алюминиевого электролизера. Катодная футеровка алюминиевого электролизера включает углеродные блоки, теплоизоляционный слой и огнеупорную часть, состоящую из двух защитных слоев - верхнего, примыкающего к...
Тип: Изобретение
Номер охранного документа: 0002266983
Дата охранного документа: 27.12.2005
10.04.2019
№219.016.ffe2

Способ автоматического устранения анодных эффектов

Изобретение относится к области электролитического получения алюминия из расплавов и предназначено для автоматического устранения анодных эффектов в электролизерах с самообжигающимся анодом. Техническим результатом является увеличение надежности гашения, снижение времени гашения анодного...
Тип: Изобретение
Номер охранного документа: 0002285755
Дата охранного документа: 20.10.2006
29.04.2019
№219.017.3e6c

Многополярная электролизная ванна для получения жидких металлов электролизом расплавов и способ установки электролизных ванн

Группа изобретений относится к цветной металлургии, а именно к конструкциям для производства металлов электролизом расплавленного электролита, в частности алюминия, и способу установки электролизных ванн. Получаемыми металлами помимо алюминия могут быть магний, литий, натрий, свинец....
Тип: Изобретение
Номер охранного документа: 0002275443
Дата охранного документа: 27.04.2006
29.04.2019
№219.017.3f43

Оксидный материал для несгораемых анодов алюминиевых электролизеров (варианты)

Изобретение относится к области цветной металлургии и может быть использовано при изготовлении инертных анодов для получения металлов электролизом расплавов, в частности для электролитического получения алюминия в криолит-глиноземных расплавах. В качестве материала для несгораемых анодов...
Тип: Изобретение
Номер охранного документа: 0002291915
Дата охранного документа: 20.01.2007
Showing 1-2 of 2 items.
29.04.2019
№219.017.3fe6

Устройство для подачи сыпучих материалов в электролизер

Изобретение относится к цветной металлургии, в частности к получению алюминия на электролизерах с верхним токоподводом к самообжигающемуся аноду. Устройство содержит бункер, прикрепленный к анодному кожуху электролизера, объемный дозатор клапанного типа, соединенный с бункером, и коаксиально...
Тип: Изобретение
Номер охранного документа: 0002239006
Дата охранного документа: 27.10.2004
18.05.2019
№219.017.5563

Устройство компенсации

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия в электролизерах, размещенных в корпусе в два ряда поперечно, и может быть использовано для компенсации нежелательного влияния магнитного поля на крайние электролизеры в серии. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002237752
Дата охранного документа: 10.10.2004
+ добавить свой РИД