×
10.04.2019
219.016.ff0f

Результат интеллектуальной деятельности: Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования

Вид РИД

Изобретение

№ охранного документа
0002684329
Дата охранного документа
08.04.2019
Аннотация: Настоящее изобретение относится к способу получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов. Описан способ капсулирования ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов, полученных в результате синтеза смеси компонентов в соотношении: 0,021-0,035 моль дифенилолпропана и 0,035 моль 4,4'-дифторбензофенона; или смеси 0,021-0,035 моль дифенилолпропана, 0,035 моль 4,4'-дифторбензофенона и 0,00875-0,0105 моль 4,4'-диоксидифенила; или смеси 0,014-0,035 моль фенолфталеина и 0,035 моль 4,4'-дифторбензофенона; или смеси 0,014-0,035 моль фенолфталеина, 0,00875-0,0105 моль 4,4'-диоксидифенила и 0,035 моль 4,4'-дифторбензофенона; или смеси 0,021-0,035 моль дифенилолпропана, 0,014-0,035 моль фенолфталеина и 0,035 моль 4,4'-дифторбензофенона, при этом в каждом случае в присутствии 0,0455 моль карбоната калия, 90 мл N,N-диметилацетамида и 0,00764 г (0,1 мас.% от массы 4,4'-дифторбензофенона) наноуглерода марки GNC, характеризующийся тем, что осуществляют капсулирование непрерывным процессом путём обработки растворов полиэфиров в хлорированном органическом растворителе водным раствором желатина, пектина яблочного или смеси желатина, пектина яблочного и в хлороформе, причем при ступенчатом подъеме температуры от 20 до 65°С проводится отгонка и регенерация хлорированного органического растворителя при температурах 55±5°С, проводят разбавление реакционной смеси водой при 40±5°С, причем полученный материал имеет сферическую форму с диаметрами частиц от 27 до 165 мкм. Технический результат – экономически выгодный способ получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов, являющихся неслипающимися, сыпучими, не дающими пыли, легко перерабатываемыми методом литья и экструзии, обладающими более высокой насыпной плотностью. 1 табл., 15 пр.

Изобретение относится к способу получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов, используемых в качестве термо- и теплостойких конструкционных полимерных материалов и 3D печати. Предлагаемые капсулированные ароматические полиэфирэфир- и сополиэфирэфиркетоны представляют собой соединения формул:

I - полиэфирэфиркетон на основе дифенилолпропана и 4,4'-дифторбензофенона;

II - сополиэфирэфиркетон на основе дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона;

III - полиэфирэфиркетон на основе фенолфталеина и 4,4'-дифторбензофенона;

IV - сополиэфирэфиркетон на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона;

V - сополиэфирэфиркетон на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона.

Из-за специфических особенностей работы 3D-принтеров при выращивании полимерных изделий, требуются сферические порошки (гранулы) определенных размеров различных полимеров органической природы.

Наиболее часто применяются порошки полиэфиров с размерами частиц 10-100 мкм. Как правило, компании-производители 3D-принтеров рекомендуют работать с определенным набором полимеров, которые поставляются самой компанией.

В соответствии с патентами ФРГ №3700808, Японии №61-176627, РФ RU 2427591, ФРГ №3901072 и РФ RU 2470956 получены ароматические полиэфиркетоны на основе дифенилолпропана, фенолфтфлеина, других диолов и представлены способы их получения. Недостатками этих полиэфиров являются сложность, многостадийность процессов синтеза. Кроме этого, полиэфирэфиркетоны имеют форму хлопьев, волокон, или частиц неопределенной формы с большими размерами (от 200 мкм до 1-2 мм). Это делает их непригодными к использованию в 3D печати.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемой выступает патент на изобретение США US 7217780, описывающий "Полиэфиркетоны и способ их получения". Недостатками полиэфиркетонов по патенту США №7217780 являются сложность, многостадийность процессов синтеза. Кроме этого, по описанию патента, получают частицы полиэфиркетона размерами от 18 до 50 мкм, но не приводятся данные об их формах.

Задачей настоящего изобретения является синтез полиэфирэфиркетонов и сополиэфирэфиркетонов, а так же разработка упрощенного и экономически выгодного за счет меньшего числа используемых компонентов способа получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов сферической формы.

Поставленная задача достигается тем, что проводится синтез поли- и сополиэфиркетонов ниже приводимых строений:

I - полиэфирэфиркетон на основе дифенилолпропана и 4,4'-дифторбензофенона;

II - сополиэфирэфиркетон на основе дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона;

III - полиэфирэфиркетон на основе фенолфталеина и 4,4'-дифторбензофенона;

IV - сополиэфирэфиркетон на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона;

V - сополиэфирэфиркетон на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона в присутствии наноуглерода марки GNC (глобулярный наноуглерод) и их последующее капсулирование непрерывным процессом, без стадий высаждения полимеров из раствора, сушки и механического измельчения, путем обработки растворов полиэфиров в хлорированных органических растворителях, предпочтительно в хлороформе водными растворами желатина, пектина, или смеси желатина и пектина, разбавлении реакционной смеси водой, причем количественное соотношение компонентов реакции синтеза соответствует:

дифенилолпропан 0,021-0,035 (моль);
4,4'-дифторбензофенон 0,035 (моль);
4,4'-диоксидифенил 0,00875-0,0105 (моль);
фенолфталеин 0,014-0,035 (моль);
карбонат калия 0,0455 (моль);
N,N-диметилацетамид 90 (мл);
наноуглерод марки GNC 0,1 масс. % от массы 4,4'-дифторбензофенона.

Изобретение иллюстрируется следующими примерами.

Пример 1. Получение капсулированного ароматического полиэфирэфиркетона I на основе дифенилолпропана и 4,4'-дифторбензофенона.

В трехгорловую колбу, снабженную мешалкой, приспособлением для ввода инертного газа и усовершенствованной ловушкой Дина-Старка (позволяет следить за температурой отгоняемых паров), загружают 8,0 г (0,035 моль) дифенилолпропана, 7,64 г (0,035 моль) 4,4'-дифторбензофенона, 6,3 г (0,0455 моль) карбоната калия, 0,00764 г (0,1 масс. % от массы 4,4'-дифторбензофенона) наноуглерода марки GNC, 90 мл N,N-диметилацетамида (ДМАА). Включают подачу газообразного азота. Температуру поднимают до 170°C, отгоняя воду в виде азеотропной смеси с ДМАА. После полной отгонки воды, температура отгоняющихся паров принимает постоянное значение, выдерживают 30 минут, и полностью отгоняют растворитель. Охлаждают содержимое колбы до 50°C и приливают 120 мл хлороформа. После растворения полимера, раствор охлаждают до комнатной температуры, отфильтровывают нерастворимые неорганические соли. Фильтрат отмывают от остатка солей дистиллированной водой 3 раза по 400 мл. Полученный раствор полиэфирэфиркетона помещают в колбу с подсоединенным прямым холодильником, приливают 500 мл 0,5%-го раствора желатина, включают мешалку и выдерживают при 20°C в течение 0,5 часа. Поднимают температуру до 35°C и выдерживают 0,5 часа. Далее повышают температуру до 50°C и выдерживают 0,5 часа. Затем, нагревают до 65°C и выдерживают при этой температуре в течение 1,5 часов. Добавленный хлороформ отгоняют при температуре 55±5°C, и его можно использовать неоднократно для последующих процессов микрокапсулирования. Затем отключают нагревание, содержимое колбы охлаждают до 45±5°C, разбавляют 250 мл дистиллированной воды при температуре 40±5°C. Осадок с колбы отфильтровывают на воронке Бюхнера с колбой Бунзена, промывают на фильтре 1000 мл воды и сушат при 75°C 1 час, при 100°C - 2 часа, при 150°C - 3 часа. Фильтрат отправляют на регенерацию желатина. Получают 13,8 г (97%) порошкообразного капсулированного полиэфирэфиркетона I. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона I даны в таблице 1. Частицы порошка являются сыпучими, не слипаются, при переработке не образуют пыль. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы со средним диаметром 60-92 мкм.

Пример 2. Капсулирование и выделение продукта проводят по примеру 1, только вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 12,1 г (85%) порошка капсулированного полиэфирэфиркетона I. Некоторые характеристики капсулированнного ароматического полиэфирэфиркетона I даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 42-85 мкм.

Пример 3. Капсулирование и выделение продукта проводят по примеру 1, только вместо чистого желатина берут смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 12,4 г (87%) порошка капсулированного полиэфирэфиркетона I. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона I даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 31-94 мкм.

Пример 4. Получение капсулированного ароматического сополиэфирэфиркетона II из дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона.

Синтез, капсулирование и выделение продукта проводят по примеру 1, только на стадии синтеза сополиэфирэфиркетона II берут 5,6 г (0,0245 моль) дифенилолпропана и 1,96 г (0,0105 моль) 4,4'-диоксидифенила. Получают 12,7 г (91%) порошка капсулированного сополиэфирэфиркетона II. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона II даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 62-101 мкм.

Пример 5. Синтез, капсулирование и выделение продукта проводят по примеру 1, только на стадии синтеза сополиэфирэфиркетона II берут 5,6 г (0,0245 моль) дифенилолпропана и 1,96 г (0,0105 моль) 4,4'-диоксидифенила, а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 11,7 г (84%) порошка капсулированного полиэфирэфиркетона II. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона II даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 29-125 мкм.

Пример 6. Синтез, капсулирование и выделение продукта проводят по примеру 1, только на стадии синтеза сополиэфирэфиркетона II берут 5,6 г (0,0245 моль) дифенилолпропана и 1,96 г (0,0105 моль) 4,4'-диоксидифенила, а вместо чистого желатина берут смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 11,9 г (86%) порошка капсулированного полиэфирэфиркетона II. Приведенная вязкость полимера, определенная для 0,5%-го раствора в хлороформе равна 0,92 дл/г. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 27-115 мкм.

Пример 7. Получение капсулированного ароматического полиэфирэфиркетона III на основе фенолфталеина и 4,4'-дифторбензофенона.

Капсулирование и выделение продукта проводят по примеру 1, только вместо дифенилопропана берут 11,1 г (0,035 моль) фенолфталеина. Получают 16,6 г (96%) порошка капсулированного полиэфирэфиркетона III. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона III даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 47-136 мкм.

Пример 8. Синтез, капсулирование и выделение продукта проводят по примеру 1, только вместо дифенилопропана берут 11,1 г (0,035 моль) фенолфталеина, а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 16,1 г (93%) порошка капсулированного полиэфирэфиркетона III. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона III даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 43-128 мкм.

Пример 9. Синтез, капсулирование и выделение продукта проводят по примеру 1, только вместо дифенилопропана берут 11,1 г (0,035 моль) фенолфталеина, а вместо желатина используют смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 15,743 г (91%) порошка капсулированного полиэфирэфиркетона III. Некоторые характеристики капсулированного ароматического полиэфирэфиркетона III даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 35-118 мкм.

Пример 10. Получение капсулированного ароматического сополиэфирэфиркетона IV на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона.

Синтез, капсулирование и выделение продукта проводят по примеру 7, только загрузки реагентов равны: фенолфталеин - 8,36 г (0,02625 моль) и добавляют 4,4'-диоксидифенил 1,63 г (0,00875 моль). Получают 13,7 г (85%) порошка капсулированного сополиэфирэфиркетона IV. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона IV даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 41-87 мкм.

Пример 11. Синтез, капсулирование и выделение продукта проводят по примеру 10, только загрузки реагентов равны: фенолфталеин - 8,36 г (0,02625 моль), 4,4'-диоксидифенил 1,63 г (0,00875 моль), а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 13,4 г (83%) порошка капсулированного сополиэфирэфиркетона IV. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона IV даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 38-139 мкм.

Пример 12. Синтез, капсулирование и выделение продукта проводят по примеру 10, только загрузки реагентов равны: фенолфталеин - 8,36 г (0,02625 моль), 4,4'-диоксидифенил 1,63 г (0,00875 моль), а вместо желатина используют смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 12,9 г (80%) порошка капсулированного полиэфирэфиркетона IV. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона IV даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 56-106 мкм.

Пример 13. Получение капсулированного ароматического сополиэфирэфиркетона V на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона.

Синтез, капсулирование и выделение продукта проводят по примеру 1, только загрузки дифенолов следующие: дифенилолпропан - 4,8 г (0,021 моль), фенолфталеин - 4,5 г (0,014 моль). Получают 14,3 г (93%) порошка капсулированного сополиэфирэфиркетона V. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона V даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 40-78 мкм.

Пример 14. Синтез, капсулирование и выделение продукта проводят по примеру 1, только загрузки дифенолов следующие: дифенилолпропан - 4,8 г (0,021 моль), фенолфталеин - 4,5 г (0,014 моль), а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 13,8 г (90%) порошка капсулированного сополиэфирэфиркетона V. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона V даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 37-165 мкм.

Пример 15. Синтез, капсулирование и выделение продукта проводят по примеру 1, только загрузки дифенолов следующие: дифенилолпропан - 4,8 г (0,021 моль), фенолфталеин - 4,5 г (0,014 моль), а вместо желатина используют смесь 250 мл 0,5%-го раствора яблочного пектина и 250 мл 0,5%-го раствора желатина. Получают 15,1 г (98%) порошка капсулированного полиэфирэфиркетона V. Некоторые характеристики капсулированного ароматического сополиэфирэфиркетона V даны в таблице 1. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 54-127 мкм.

Термогравиметрический анализ (ТГА) проведен на воздухе на дериватографе «Perkin-Elmer» при скорости подъема температуры 5°C в минуту. Температуры стеклования (Тстекл.) определены методом дифференциальной сканирующей калориметрии («Perkin-Elmer»). Приведенные вязкости (Цприв) определены для 0,5%-ных растворов ароматических полиэфирэфир- и сополиэфирэфиркетонов в хлороформе. Удельная ударная вязкость ( с надрезом) определена на образцах с размерами 4*6*10 мм на приборе «Динстат» по ГОСТ 4647-2015 (Межгосударственный стандарт. Пластмассы. Метод определения ударной вязкости по Шарпи). Насыпная плотность капсулированного полимерного материала определялась в соответствии с ГОСТ Р 50485-93.

Представленные примеры показывают, что разработанный процесс получения микрокапсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов является простым, исключающим стадии выделения полимеров после их синтеза, из раствора, их сушку, измельчение. Способ в экономическом плане выгоден, используемые реагенты легко регенерируются и их можно многократно использовать. Сами капсулированные образцы ароматических полиэфирэфир- и сополиэфирэфиркетонов являются неслипающимися, сыпучими, не дающими пыли, легко перерабатываемыми методами литья и экструзии материалами с более высокой (минимум в 7-8 раз) насыпной плотностью, чем у некапсулированных аналогичных полимеров.

Источник поступления информации: Роспатент

Showing 91-100 of 174 items.
01.08.2019
№219.017.bb18

Способ активной защиты акватории ударно-волновым воздействием на подводный объект и устройство для его осуществления

Изобретение относится к системам защиты акваторий от подводных диверсантов и других подводных объектов. Предложен способ активной защиты акватории ударно-волновым воздействием на подводный объект, включающий электродинамическое инициирование излучателем ударно-волнового импульса сжатия...
Тип: Изобретение
Номер охранного документа: 0002696048
Дата охранного документа: 30.07.2019
02.08.2019
№219.017.bbb6

Применение ксенона, иммобилизированного в носителе в средстве для повышения резистентности организма к гипоксии

Изобретение относится к неотложной медицине, и может быть использовано для для повышения резистентности организма к гипоксии. Для этого используют средство в форме газа ксенона, иммобилизированного в носителе, причем указанное средство дополнительно содержит смесь препаратов, состоящую из:...
Тип: Изобретение
Номер охранного документа: 0002696100
Дата охранного документа: 31.07.2019
10.08.2019
№219.017.bdc9

Способ подводной подледной сейсморазведки и устройство для его осуществления

Изобретение относится к области морской геофизики и может быть использовано для проведения подводной многомерной сейсмической разведки на акваториях, покрытых льдом круглогодично или большую часть года. Способ подводной подледной сейсморазведки заключается в автоматической расстановке...
Тип: Изобретение
Номер охранного документа: 0002696820
Дата охранного документа: 06.08.2019
12.08.2019
№219.017.be84

Устройство для подводной подледной сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для проведения подводной многомерной сейсмической разведки на акваториях, покрытых льдом круглогодично или большую часть года. Устройство для подводной подледной сейсмической разведки содержит контейнер, установленный на...
Тип: Изобретение
Номер охранного документа: 0002696816
Дата охранного документа: 06.08.2019
16.08.2019
№219.017.c0ac

Способ физического осаждения тонких пленок металлов из газовой фазы

Изобретение относится к способу физического осаждения из газовой фазы, полученной с помощью электронно-лучевого испарения, тонкой пленки, состоящей из кристаллитов серебра, и может быть использовано для изготовления устройств, требующих качественных тонких пленок металлов, в сферах...
Тип: Изобретение
Номер охранного документа: 0002697313
Дата охранного документа: 13.08.2019
17.08.2019
№219.017.c0ea

Способ получения прозрачной высоколегированной er:иаг - керамики

Изобретение относится к области получения высоколегированного ионами эрбия прозрачного керамического материала со структурой иттрий-алюминиевого граната (Еr:ИАГ) для использования в качестве лазерного материала в медицине и оптической связи. Способ включает измельчение полученного методом...
Тип: Изобретение
Номер охранного документа: 0002697561
Дата охранного документа: 15.08.2019
17.08.2019
№219.017.c11e

Способ получения мало агломерированного наноразмерного прекурсора для синтеза твердых растворов иттрий-алюминиевого граната с оксидами редкоземельных элементов

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, содержащих редкоземельные элементы, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной...
Тип: Изобретение
Номер охранного документа: 0002697562
Дата охранного документа: 15.08.2019
02.09.2019
№219.017.c5f6

Способ криоконсервации биологических объектов при одновременной гомогенной нуклеации кристаллов льда и клатрата ксенона

Изобретение относится к области криоконсервации биообъектов, таких как клетки, ткани, органы. Способ криоконсервации биообъекта путем сочетания охлаждения и давления клатратообразующим инертным газом в закрытом объеме содержит этап добавки к исходному раствору, в котором размещен биообъект,...
Тип: Изобретение
Номер охранного документа: 0002698903
Дата охранного документа: 30.08.2019
07.09.2019
№219.017.c854

Способ получения малоагломерированных высокостехиометричных наноразмерных порошков прекурсора на основе иттрий-алюминиевого граната с катионами редкоземельных элементов

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, содержащих редкоземельные элементы, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной...
Тип: Изобретение
Номер охранного документа: 0002699500
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cd29

Комплекс вооружения для стрельбы с плеча

Изобретение относится к пусковым установкам. Комплекс вооружения для стрельбы с плеча включает в себя транспортно-пусковой контейнер с управляемой ракетой и прицельно-пусковое устройство. Прицельно-пусковое устройство содержит оптический прицел, лазерный излучатель, систему стабилизации,...
Тип: Изобретение
Номер охранного документа: 0002701629
Дата охранного документа: 30.09.2019
Showing 91-93 of 93 items.
01.06.2023
№223.018.74e1

Способ получения аппретированных углеволокон и наполненный ими полиэфиримидный композит

Изобретение относится к области производства конструкционных изделий в аддитивных технологиях. Предложены способ получения аппретированного углеродного волокна путём нанесения аппрета, представляющего собой смесь п-фенилендиамина 1-4 мас.% и олигофениленсульфона на основе...
Тип: Изобретение
Номер охранного документа: 0002796405
Дата охранного документа: 23.05.2023
01.06.2023
№223.018.74e7

Способ получения аппретированных стеклянных волокон и полимерный композиционный материал

Изобретение относится к области производства конструкционных изделий специального назначения в аддитивных технологиях. Предложены способ получения аппретированного стекловолокна путём нанесения аппрета, представляющего собой 3,4-толуилендиамин 1,0-3,5 мас.%, на стекловолокно из раствора с...
Тип: Изобретение
Номер охранного документа: 0002796406
Дата охранного документа: 23.05.2023
01.06.2023
№223.018.74f6

Способ получения аппретированных углеволокон и полимерные композиции на их основе

Изобретение относится к области производства конструкционных изделий в аддитивных технологиях. Предложены способ получения аппретированного углеродного волокна путём нанесения аппрета, представляющего собой смесь аморфного эфирэфиркетона 1,0-3,5 мас. % и 1,3-бис(аминоформил)бензола 3,5-1,0 мас....
Тип: Изобретение
Номер охранного документа: 0002796404
Дата охранного документа: 23.05.2023
+ добавить свой РИД