×
08.04.2019
219.016.fe4f

Результат интеллектуальной деятельности: Способ обнаружения и контроля космического мусора вблизи геостационарной орбиты

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам и средствам мониторинга и определения орбит объектов космического мусора с борта космического аппарата (КА). КА размещают на орбите ниже геостационарной (ГСО), снабжают обычными служебными системами, а также аппаратурой связи с наземным пунктом. Оптическую систему КА размещают на поворотной платформе и направляют в область ГСО. Полосу обзора вдоль ГСО формируют разворотом поля зрения оптической системы вокруг вектора орбитальной скорости КА в несколько дискретных положений. В каждом из них получают неподвижное на фоне звёзд изображение некоторой области вблизи ГСО, разворачивая оптическую систему вокруг бинормали орбиты КА с угловой скоростью, равной и противоположной орбитальной. Разворот в следующее дискретное положение осуществляют со средней угловой скоростью, зависящей от времени перенацеливания и вертикальной ширины мгновенного поля зрения оптической системы. Техническим результатом является сокращение количества КА наблюдения до одного и облегчение селекции объектов космического мусора. 1 табл., 2 ил.

Изобретение предназначено для использования в космической технике и может быть использовано при создании систем обзора бортовыми средствами космического аппарата пространства вблизи ГСО для мониторинга и определения параметров орбит объектов космического мусора.

Изобретение позволяет уменьшить количество космических аппаратов до одного для периодического обзора объектов космического мусора (ОКМ) вблизи геостационарной орбиты и обеспечить возможность остановки изображения звезд на фотоприемнике во время съема информации для упрощения регистрации оптической системой трека обнаруженного объекта космического мусора.

Известны технические решения, позволяющие наблюдать и регистрировать объекты космического мусора, которые можно рассматривать как аналоги предлагаемого изобретения.

Известно «Устройство регистрации параметров микрометеороидов и космического мусора», (патент РФ 2456639, МПК G01T 1/34), содержащее мишень в виде четырех панелей солнечных батарей, соединенных между собой пленочной структурой металл-диэлектрик-металл и приемника ионов в виде шара, соединенного с блоком измерения. При соударении микрометеороида или объекта космического мусора с мишенями в месте контакта образуется плазма, ионы которой попадают на приемник ионов. Недостатком данного технического решения является невозможность определения скорости, направления и вычисления параметров орбит объектов космического мусора вблизи геостационарной орбиты, соударение с которыми не произошло.

Известно «Устройство и метод обнаружения космического мусора с помощью оптической системы, установленной на космическом аппарате» (патент Японии 2000-025700, МПК B64G 1/68). Наблюдение и обнаружение обломков космического мусора на орбите осуществляют устройством обработки изображения, а параметры орбит объектов космического мусора вычисляют по следам их движения на дисплее. Недостатком данного устройства и метода обнаружения космического мусора является необходимость обработки большого объема информации для селекции следа космического мусора на фоне следов перемещения изображения звезд за счет движения КА по орбите при ограниченном времени наблюдения ОКМ на дисплее.

Известен спутник SBSS (Space Based Space Surveillance) с оптико-электронной камерой на борту, запущенный США в 2013 году и предназначенный для слежения за космическими объектами, другими спутниками и обломками («космическим мусором»). Высота орбиты спутника 625-640 км, период обращения 97,42 мин. Со своей рабочей орбиты КА может наблюдать объекты от низких орбитах до геостационарной орбиты с возможностью сканирования всего пояса за сутки. Космический аппарат SBSS, оснащенный оптическим телескопом с апертурой 30 см и детектором изображений размером 2,4 мегапикселя, входит в систему контроля космического пространства (СККП) США и за последние несколько лет существенно расширил возможности этой системы в части наблюдения космических объектов с размерами менее 10 см. Недостатком данного спутника является недостаточное быстродействие, обусловленное трудностью селекции объектов космического мусора на низких орбитах и геостационарной орбите, поскольку в поле зрения оптико-электронной камеры регистрируется весь космический мусор в широком диапазоне высот и за короткое время наблюдения практически невозможно определить, составляет ли угрозу объект космического мусора для объектов на геостационарной орбите.

Известен «Метод наблюдения космического мусора» (патент Японии 2011 - 218834, МПК B64G 1/68) с помощью подсветки лазерным лучам области пространства, наблюдаемой ПЗС-камерой, установленной на КА. Недостатком данного метода является то, что наблюдаются только подсвеченные лазерным лучом объекты космического мусора и что снижает вероятность выявления рисков столкновения частиц объекта космического мусора с космическими аппаратами на геостационарной орбите.

Прототипом, наиболее близким, по сути, техническим решением к заявляемому изобретению является «Система наблюдения за космическими объектами» (патент на полезную модель RU 82678 U, МПК B64G 1/10), так как данная система наблюдения имеет аналогичное предназначение и некоторые аналогичные основные возможности по множеству параметров, что и заявленное. Данная система, являющаяся прототипом, содержит, по меньшей мере, один наземный пункт приема информации, по меньшей мере, четыре космических аппарата наблюдения, равномерно размещенных на круговой солнечно-синхронной орбите обратного наклонения и снабженных системой угловой стабилизации и ориентации, системой электроснабжения, системой терморегулирования, аппаратурой передачи и приема данных, выполненной с возможностью осуществления связи с наземным пунктом приема информации и, по меньшей мере, с двумя соседними космическими аппаратами наблюдения, по меньшей мере, двумя оптико-электронными приборами, выполненными с возможностью обнаружения космических объектов и определения их угловых приборных координат, и процессором обработки данных, подключенным к выходам оптико-электронных приборов и к входу аппаратуры передачи и приема данных, а также аппаратуру определения положения центра масс космического аппарата наблюдения, а космические аппараты наблюдения размещены на орбите с радиусом, имеющим значение не менее RATM/cos(π/N), где RATM - максимальный радиус Земли с плотными слоями ее атмосферы; N - количество космических аппаратов наблюдения; и на каждом космическом аппарате наблюдения один оптико-электронный прибор установлен с возможностью наблюдения соседнего космического аппарата наблюдения, расположенного в направлении орбитального движения данного космического аппарата наблюдения, а второй оптико-электронный прибор установлен с возможностью наблюдения соседнего космического аппарата наблюдения, расположенного в направлении, противоположном направлению орбитального движения данного космического аппарата наблюдения. Система снабжена космическими аппаратами ретрансляции, размещенными на геостационарной орбите с возможностью создания каналов радиосвязи с каждым космическим аппаратом наблюдения и с наземным пунктом приема информации.

Недостатком данной системы является необходимость наличия восьми оптических систем наблюдения по две на каждом космическом аппарате, равномерно размещенных на круговой солнечно-синхронной орбите, в полях зрения которых регистрируются все объекты космического мусора, находящиеся как на низких, так и на высоких орбитах. При этом наблюдение движения объектов космического мусора в полях зрения оптических систем осуществляется на фоне перемещающихся звезд за счет движения космических аппаратов по орбите, что требует разработки сложных алгоритмов селекции движущихся объектов космического мусора и перемещающихся звезд и, соответственно, обработки большого количества информации в ограниченное время, что затрудняет селекцию объектов космического мусора.

Задачей настоящего технического решения является сокращение количества космических аппаратов до одного и обеспечение возможности остановки изображения звезд на фотоприемнике во время съема информации для облегчения выделения оптической системой трека обнаруженного объекта космического мусора.

Космический мусора вблизи геостационарной орбите сосредоточен, в основном, вблизи небесного экватора, что и определяет отличительные признаки предлагаемого изобретения.

Для контроля геосинхронных объектов космического мусора с большим наклонением их орбит (порядка ~ 25°) предусматривается перенацеливание мгновенного поля зрения оптической системы, направленного вдоль радиус-вектора космического аппарата путем вращение вокруг вектора его орбитальной скорости Указанное перенацеливание образует широкую полосу обзора вдоль геостационарной орбиты. Чем ближе круговая орбита космического аппарата к геостационарной орбите, тем меньше размер контролируемого объекта космического мусора, однако тем меньше обеспечиваемое наклонение imax геосинхронного объекта космического мусора, который захватывается сформированной полосой обзора.

Соотношение между наклонением imax углом и разностью высот геостационарной орбиты и высоты орбиты космического аппарата (НГСО - НКА) при равенстве угла обзора βобз = ±60 угл. град., имеет вид

Высота геостационарной орбиты, измеренная от центра Земли RГСО=42164 км, а измеренная от поверхности Земли, при ее радиусе 6371 км НГСО=35793 км. Расположение космического аппарата наблюдения на орбитах с высотой НКА, ниже высоты геостационарной орбиты на величину hКА обеспечивает время между сеансами наблюдения ТСН для наклонений орбит объектов космического мусора в соответствии с таблицей 1.

Если проницающая сила оптической системы mT не менее 18 звездной величины, то размеры обнаруживаемого объекта космического мусору составляют величину 4,5÷22,0 см в данном диапазоне высот.

Для расширения полосы обзора оптической системы вдоль геостационарной орбиты, обеспечивают перенацеливание мгновенного поля зрения этой системы в несколько дискретных положений путем ее вращения вокруг вектора орбитальной скорости КА. В каждом дискретном положении производят съем изображения на фотоприемнике некоторой области вблизи ГСО.

Для реализации режима остановки звезд в поле зрения оптической системы в моменты съема информации в каждом дискретном положении поля зрения, оптическую систему помещают на поворотную платформу и вращают платформу в моменты съема информации tc вокруг оси, перпендикулярной плоскости орбиты КА с угловой скоростью , равной угловой орбитальной скорости КА, в направлении противоположном угловому вращению КА.

По окончанию процесса считывания информации с фотоприемника оптической системы, поле зрения оптической системы перенацеливают в следующее дискретное положение со средней угловой скоростью, зависящей от времени перенацеливания и вертикальной ширины углового мгновенного поля зрения где 2βв - вертикальная ширина углового мгновенного поля зрения оптической системы.

Для высокоточного определения параметров орбиты геосинхронного объекта космического мусора необходим большой мерный интервал позиционных измерений, производимых оптической системой с регистраций треков точечных изображений в точках, захваченных мгновенным полем зрения на витках обращения объекта космического мусора вблизи нисходящих и восходящих узлов их орбит. Указанное справедливо при малом наклонении орбиты объекта космического мусора i. Если i велико, треки будут регистрироваться в точках, принадлежащих полосе обзора. Однако, необходимо чтобы на соседних витках обращения объекта космического мусора вблизи узлов его орбиты, радиус-вектор космического аппарата, который ориентируется на середину полосы обзора, был направлен на восходящий или нисходящий узел орбиты объекта космического мусора. Если это условие выполняется, изменение аргумента широты геосинхронного объекта космического мусора, регистрируемое на соседних полувитках, составляет большую величину равную ~ 180°. В этом случае достигаться большой мерный интервал позиционных измерений.

Первоначально это условие представляется через соотношение между допустимыми периодами обращения космического аппарата наблюдения (ТКА) и геосинхронного объекта космического мусора (ТГСО):

ТКА((k+1)+0,5)=ТГСО(k+0,5),

где: ТГСО=1 сут, k - натуральный ряд чисел от 0 до 4. Увеличение параметра к на одну 1 соответствует увеличению времени между сеансами наблюдения ТСН на 1 сутки. Затем это условие представляется через соотношение между допустимыми высотами НГСО и НКА. Полагая k=0 можно получить, что допустимые значения ТКАГСО/3, т.е. 0,333 сут и определить допустимое значение НКА=13899 км, соответствующее ТСН=0,5 и ТКА=0,333 сут.

На фиг. 1 обозначены: КА - космический аппарат; НКА - высота орбиты космического аппарата; hКА - расстояние от орбиты космического аппарата до геостационарной орбиты; βобз - угол обзора геостационарной орбиты; 2βВ и 2βг - вертикальная и горизонтальная ширины поля зрения оптической системы; 1 - геостационарная орбита; n - количество положений перенацеливаемого мгновенного поля зрения в направлении, перпендикулярном вектору орбитальной скорости космического аппарата и плоскости геостационарной орбиты, RЗ - радиус Земли.

На фиг. 2 обозначены: ГСО - геостационарная орбита; КА - космический аппарат с бортовой оптической системой наблюдения; - диапазон отклонений поля зрения оптической системы; hКА - расстояние орбиты космического аппарата до геостационарной орбиты; imax - максимальный угол наклонения орбиты объекта космического мусора; βобз - угол обзора геостационарной орбиты;

Основные показатели эффективности предлагаемого способа обнаружения и контроля космического мусора вблизи геостационарной орбиты с наклонением imax=25°:

- возрастает проницающая сила оптической системы с увеличением времени пребывания объекта космического мусора в пикселе фотоприемника, что позволяет обнаруживать объекты космического мусора с меньшим блеском;

- с увеличением дальности наблюдения пропорционально увеличивается размер обнаруживаемого объекта космического мусора;

- величина дуги ΔU пробега изображения объекта космического мусора через полосу обзора уменьшается с увеличением угловой скорости обращения космического аппарата вокруг центра Земли. Общий мерный интервал ΔUобщ, накопленный за время наблюдения объекта космического мусора в районах его восходящего и нисходящего узлов, составляет ~ 180°;

- с уменьшением расстояния hКА между геостационарной орбитой и орбитой космического аппарата уменьшается размер обнаруживаемого объекта космического мусора до 7 см, но ухудшается (возрастает) время Тсн между сеансами наблюдения объектов космического мусора;

- реализуемая проницающая сила оптической системы mT, оцениваемая с учетом величины моделируемой угловой скорости объекта космического мусора, составляет ~ 18 зв. в.

- вероятные погрешности определения параметров движения геосинхронных круговых орбит составляют: по координатам ΔХ, ΔY, ΔZ ~ 100 м; по скоростям по углу наклонения Δi ~ 3 угл. с.

Способ обнаружения и контроля космического мусора вблизи геостационарной орбиты, при котором космический аппарат наблюдения размещают на околоземной орбите, снабжают системой угловой стабилизации и ориентации, системой электропитания, системой терморегулирования, аппаратурой передачи и приема данных, выполненной с возможностью осуществления связи с наземным пунктом приема информации, отличающийся тем, что космический аппарат размещают на орбите ниже геостационарной, а бортовую оптическую систему размещают на поворотной платформе и направляют в область геостационарной орбиты, при этом полосу обзора оптической системы вдоль геостационарной орбиты обеспечивают перенацеливанием мгновенного поля зрения этой системы в несколько дискретных положений путем ее вращения вокруг вектора орбитальной скорости космического аппарата, а в каждом дискретном положении производят съем изображения на фотоприемнике некоторой области вблизи геостационарной орбиты, при этом оптическую систему разворачивают вокруг оси, перпендикулярной плоскости орбиты космического аппарата, с угловой скоростью, равной угловой орбитальной скорости космического аппарата, в противоположном направлении, осуществляя таким образом остановку изображения звезд на фотоприемнике, а перенацеливание оптической системы в следующее дискретное положение осуществляют со средней угловой скоростью зависящей от времени перенацеливания t и вертикальной ширины 2β углового мгновенного поля зрения оптической системы.
Способ обнаружения и контроля космического мусора вблизи геостационарной орбиты
Способ обнаружения и контроля космического мусора вблизи геостационарной орбиты
Способ обнаружения и контроля космического мусора вблизи геостационарной орбиты
Источник поступления информации: Роспатент

Showing 1-10 of 120 items.
25.08.2017
№217.015.bb66

Ракетно-прямоточный двигатель с регулируемым расходом твёрдого топлива

Изобретение относится к ракетной технике и может быть использовано в гиперзвуковых (М≥5) крылатых ракетах с ракетно-прямоточными двигателями, предназначенных для полетов на больших высотах. Ракетно-прямоточный двигатель содержит воздухозаборник, газогенератор с зарядом твердого топлива,...
Тип: Изобретение
Номер охранного документа: 0002615889
Дата охранного документа: 11.04.2017
29.12.2017
№217.015.f0f4

Кантователь (варианты)

Изобретение относится к конструкциям, предназначенным для кантования (поворота) изделий различного назначения, предпочтительнее космических аппаратов. Кантователь содержит основание, две стойки, к которым на оси кантования закреплена грузовая платформа, которая снабжена поворотной планшайбой, и...
Тип: Изобретение
Номер охранного документа: 0002638997
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f62d

Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника земли

Использование: в области электротехники. Технический результат – более точное определение времени начала балансировки аккумуляторов. Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника Земли заключается в контроле...
Тип: Изобретение
Номер охранного документа: 0002637815
Дата охранного документа: 07.12.2017
20.01.2018
№218.016.1384

Способ управления автономной системой электроснабжения космического аппарата

Использование: в области электротехники в системах электроснабжения (СЭС) космических аппаратов (КА). Технический результат - обеспечение штатного отключения сеансной нагрузки при нештатной ситуации. Способ управления автономной системой электроснабжения, которая содержит солнечную батарею и...
Тип: Изобретение
Номер охранного документа: 0002634473
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1773

Фильтр

Изобретение предназначено для фильтрования. Фильтр содержит корпус, помещенную внутрь корпуса несущую трубу и рабочие модули, закрепленные поперек несущей трубы. Каждый из рабочих модулей содержит расположенные на удалении друг от друга первый и второй фильтровальные пакеты, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002635802
Дата охранного документа: 16.11.2017
17.02.2018
№218.016.2b00

Способ получения термически стабильного носителя для катализатора сжигания монотоплива

Изобретение относится к области химии и может быть использовано для получения носителей для катализаторов, обладающих высокой площадью поверхности и термостабильностью в условиях сверхвысоких температур, например, в процессах сжигания монотоплива, в том числе "зеленого топлива" на основе...
Тип: Изобретение
Номер охранного документа: 0002642966
Дата охранного документа: 30.01.2018
04.04.2018
№218.016.3663

Способ ориентации космического аппарата в солнечно-земной системе координат

Изобретение относится к управлению ориентацией космических аппаратов (КА), осуществляемой в солнечно-земной системе координат. Способ включает ориентацию первой оси КА на Землю путем разворотов вокруг второй и третьей осей КА с помощью электромеханических исполнительных органов. При отсутствии...
Тип: Изобретение
Номер охранного документа: 0002646392
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.4058

Способ разгрузки управляющих двигателей-маховиков космического аппарата

Изобретение относится к управлению относительным движением космического аппарата (КА). Разгрузка управляющих двигателей-маховиков (ДМ) в выбранном канале ориентации осуществляется по двухконтурной схеме. Первый контур реализует необходимую ориентацию КА и накапливает импульс внешнего...
Тип: Изобретение
Номер охранного документа: 0002648906
Дата охранного документа: 28.03.2018
29.05.2018
№218.016.5430

Сплав на основе алюминия для противометеоритной защиты

Изобретение относится к деформируемым сплавам на основе алюминия и может быть использовано для защиты космических аппаратов от микрометеоритов и техногенных тел. Сплав на основе алюминия содержит, мас. %: цинк 5,8-11; магний 1,5-3,5; медь 0,1-3; марганец 0,1-0,5; по меньшей мере один элемент...
Тип: Изобретение
Номер охранного документа: 0002654224
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5a5a

Рефлектор

Изобретение относится к производству изделий из композиционных материалов, а именно конструкциям и способам изготовления прецизионных рефлекторов антенн с отражающей поверхностью, образованной не только кривой второго порядка, но и специальным сложным профилем. Задачами настоящего изобретения...
Тип: Изобретение
Номер охранного документа: 0002655473
Дата охранного документа: 28.05.2018
Showing 1-10 of 50 items.
10.02.2015
№216.013.2653

Зонт открытой рудовосстановительной электропечи

Изобретение относится к области металлургии, в частности к элементам конструкции газоотводящего оборудования открытой рудовосстановительной печи для производства, преимущественно, кристаллического кремния и ферросилиция. Зонт состоит из крышки, стен корпуса меньшего диаметра и подвижного...
Тип: Изобретение
Номер охранного документа: 0002541264
Дата охранного документа: 10.02.2015
20.03.2015
№216.013.3265

Способ создания противофильтрационного экрана гидротехнического сооружения для хранения промышленных отходов

Изобретение относится к способам предотвращения загрязнения грунтов и подземных вод компонентами промышленных отходов, в частности к созданию противофильтрационных экранов полигонов захоронения и складирования отходов, шламовых полей. При создании противофильтрационного экрана гидротехнического...
Тип: Изобретение
Номер охранного документа: 0002544376
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.326b

Изолирующий материал для шламохранилищ промышленных отходов

Предложенное изобретение относится к строительным материалам и утилизации отходов электротермического производства. Изолирующий материал для шламохранилищ промышленных отходов включает глиносодержащий материал и материал в виде техногенного отхода, в качестве глиносодержащего материала он...
Тип: Изобретение
Номер охранного документа: 0002544382
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.33a3

Шихта для производства кремния

Изобретение относится к области металлургии, в частности к электротермическому способу получения кремния и кремнистых сортов ферросплавов в руднотермических печах. При получении технического кремния используется шихта, включающая кварцит, древесный уголь, нефтяной кокс, каменный уголь,...
Тип: Изобретение
Номер охранного документа: 0002544694
Дата охранного документа: 20.03.2015
20.07.2015
№216.013.623f

Способ и система управления электротехнологическими режимами восстановительной плавки технического кремния в руднотермических электрических печах

Изобретение относится к области металлургии, а именно к получению металлов и сплавов в руднотермических электрических печах. Способ управления в руднотермической электрической печи, включающей один или три печных трансформатора с вторичными обмотками, соединенными с электродами по схеме...
Тип: Изобретение
Номер охранного документа: 0002556698
Дата охранного документа: 20.07.2015
20.10.2015
№216.013.833b

Способ очистки технического кремния

Изобретение относится к области металлургии, а именно к получению металлов и сплавов в руднотермических электропечах, и может быть использовано в производстве технического кремния при его очистке от примесей. Для очистки технического кремния от примесей, в частности от железа, производят...
Тип: Изобретение
Номер охранного документа: 0002565198
Дата охранного документа: 20.10.2015
10.12.2015
№216.013.9685

Способ выплавки технического кремния

Изобретение относится к области металлургии, а именно к получению металлов и сплавов в руднотермических электропечах, и может быть использовано в производстве технического кремния и кремнистых ферросплавов. Способ включает дозирование, смешение, загрузку и непрерывное проплавление шихты,...
Тип: Изобретение
Номер охранного документа: 0002570153
Дата охранного документа: 10.12.2015
13.01.2017
№217.015.6dd2

Способ обзора космического пространства между солнцем и землёй, недоступного для наблюдения оптическими средствами, находящимися на земле и на околоземных орбитах, из-за их засветки солнцем, с космического аппарата, размещённого на орбите земли на постоянном расстоянии от земли

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для обнаружения астероидов и комет, опасных для Земли. Технический результат - расширение функциональных возможностей. Изобретение включает способ...
Тип: Изобретение
Номер охранного документа: 0002597028
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.9b2d

Космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения опасных для земли небесных тел - астероидов и комет

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для наблюдения и обнаружения небесных объектов, прежде всего астероидов и комет, опасных для Земли, летящих к Земле со всех направлений, в том числе и...
Тип: Изобретение
Номер охранного документа: 0002610066
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9ddf

Способ разогрева руднотермической печи

Изобретение относится к области металлургии и может быть использовано для получения кремния, сплавов черных и цветных металлов в руднотермических электропечах после ремонта, оборудованных установками компенсации реактивной мощности. После ремонтного простоя одновременно включают печь для плавки...
Тип: Изобретение
Номер охранного документа: 0002610650
Дата охранного документа: 14.02.2017
+ добавить свой РИД