×
04.04.2019
219.016.fcf1

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ФАЗ КИСЛОРОДНО-ОКТАЭДРИЧЕСКОГО ТИПА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения порошков фаз кислородно-октаэдрического типа, у которых подрешетка В представляет собой совокупность октаэдров ЭО (Э - катионы р- и d-элементов), соединенных между собой вершинами, а катионы подрешетки А заполняют различные по геометрии пустоты подрешетки В (например, фазы со структурой типа перовскита), и может быть использовано для изготовления функциональных пьезоэлектрических, диэлектрических и ферримагнитных и смешанных материалов, применяемых в полупроводниковой, пьезоэлектрической и радиоэлектронной технике. На первом этапе осуществляют синтез исходных нанокластеров, являющихся полимерными α-формами гидроксидов р- и d-элементов, которые осаждаются при температурах ниже 280 К из 0,1-0,3 М растворов нитратных комплексов этих элементов при рН 8±0,5 с помощью 5-10% раствора аммиака. На втором этапе к нанокластерам добавляют аммиачно-нитратный буферный раствор с насыщенными растворами нитратов различных элементов состава MeNО, Me(NO) и Me(NO). Процесс синтеза фазы заданного состава проводят при температурах ниже 280 К и атмосферном давлении. Первичную и вторичную рекристаллизацию продуктов реакции осуществляют при температурах 600-700 К. Технический результат изобретения - снижение температуры синтеза фаз указанного типа в среднем на 500 К и повышение пьезопараметров материалов на основе сегнетоэлектрических фаз с различным типом структуры. 18 пр., 2 табл., 2 ил.

Изобретение относится к способу получения порошков фаз кислородно-октаэдрического типа, у которых подрешетка В представляет собой совокупность октаэдров ЭО6 (Э - катионы р-, и d -элементов с зарядом от +3 до +5, например Fе3+, Ti4+, Zr4+, Sn4+, Nb5+), соединенных между собой вершинами, а катионы подрешетки А заполняют различные по геометрии пустоты этой подрешетки (например, фазы со структурой типа перовскита, как показано на фиг.1, калийвольфрамовой бронзы, Bi4Ti3O12 и т.д.), и может быть использовано для изготовления функциональных пьезоэлектрических, диэлектрических и ферримагнитных и смешанных материалов, монокристаллического, композиционного, пленочного и керамического типов, которые широко применяются в современной полупроводниковой, пьезоэлектрической и радиоэлектронной технике.

Известные способы получения порошков фаз кислородно-октаэдрического типа можно разделить на два типа: высокотемпературные и низкотемпературные. Первый из них осуществляется в процессе взаимодействия между твердыми фазами оксидов и (или) солей кислородных кислот при температурах выше 1000 К в течение от нескольких часов до нескольких суток - метод твердофазных реакций (далее по тексту - МТФР) [4, 5, 10]. Функциональные материалы, изготовленные с использованием порошков, синтезированных МТФР, характеризуются целым рядом недостатков, основными их которых являются: а) относительно низкая воспроизводимость электро-физических параметром (далее по тексту - ЭФП); б) значительная зависимость этих параметров от температуры; в) изменение значений параметров во времени (старение). Основной причиной указанных недостатков является невозможность точного воспроизведения макро- и микроструктуры керамики данного типа, изготавливаемой в рамках традиционных высокотемпературных технологий. В частности, используемый при синтезе фаз кислородно-октаэдрического типа метод твердофазных реакций приводит к нарушению количественного состава пьезофаз за счет испарения из пресс-заготовок прекурсоров (РbО, Вi2O3, Sb2O5 и т.д.) или их термического разложения (оксиды многих р- и d-элементов). В результате этого в процессе синтеза формируются продукты реакций, имеющие высокую и неконтролируемую неравновесную дефектность как в катионной, так и в анионной подрешетках. В свою очередь, рост концентрации неравновесных дефектов в частицах порошков способствует получению керамики с пониженными значениями пьезопараметров и точек Кюри, а также повышению ее электропроводности. Последний факт не позволяет провести эффективную поляризацию изделий, что ведет к дальнейшему снижению их ЭФП. Кроме этого, технология синтеза порошков пьезофаз, основанная на МТФР, не обеспечивает их монодисперсность. Это стимулирует рост степени неконтролируемой вторичной рекристаллизации пресс-заготовок в процессе их спекания и, следовательно, к получению образцов с различным сочетанием механических характеристик.

Попыткой устранить отдельные недостатки МТФР является использование активных прекурсоров, позволяющих несколько снизить энергию активации твердофазных реакций и, следовательно, сократить время синтеза целевой фазы, а иногда и снизить температуру процесса. Наиболее перспективными достижениями в этом направлении представляются: метод термического разложения солей [6], криохимический метод [7, 8] и метод совместного осаждения [15, 17-19]. К недостаткам этих методов относятся значительные энергозатраты, многостадийность, а в ряде случаев экологические проблемы, связанные с утилизацией растворителей или побочных продуктов реакций. Кроме этого использование активных прекурсоров, решая одни проблемы МТФР (снижение температуры и времени синтеза), создают другие, связанные с высокой концентрацией неравновесной дефектности в продуктах реакций. Последний факт связан с тем, что продукт реакции в этом случае формируются в условиях высокодефектной реакционной зоны, т.е. в значительной степени сохраняет тип и высокую неравновесную концентрацию исходных фаз. При этом, как было показано в ряде работ [6, 7], влияние предыстории прекурсоров на неравновесную дефектность продуктов реакции может проявляться не только в первом, но и во втором «поколении».

В настоящее время известны следующие методы синтеза фаз кислородно-октаэдрического типа, альтернативные МТФР: оксалатный метод [10-12], основанный на осаждении из растворов малорастворимых щавелевокислых комплексов титана, циркония и других элементов, с катионами различных s- и р-элементов во внешней сфере, с последующим разложением осадков при 1000-1200 К для получения целевого продукта; гидротермальный метод синтеза, основанный на реакциях, протекающих в присутствии жидкой фазы в автоклавах при 500-700 К и давление до 300-500 атм, между прекурсорами, имеющими необходимый катионный и анионный состав (гидроксидами, оксидами, солями и т.д.) [13, 14]. Гидроксометод, который заключался во взаимодействии смеси водных нитратных растворов соединений Ме2+ и Ti(IV) с раствором NH3, в результате чего, по мнению авторов [15], осаждаются фазы типа Ме[Тi(ОН)6], которые при t≈1000°С разлагаются с образованием целевого продукта МеТiO3 (Me=Ca, Sr, Ba). Гидролитический метод [15, 16], заключающийся во взаимодействии бутилата Ti(IV) с водными растворами Ме(ОН)2 (Me=Ca, Sr, Ba) при температуре выше 400К и приводящий к образованию кристаллических кубических фаз со структурой типа перовскита (MeТiO3). К недостаткам вышеперечисленных методов относятся: высокая температура получения конечного продукта реакции (методы 1 и 2), что фактически приводит к формированию в системах фаз с высокой неравновесной дефектностью, таких же, как в МТФР. Невозможность получения фаз заданного кристаллохимического строения (методы 2 и 4), необходимость использования сложного технологического оборудования (метод 2) или дорогостоящих прекурсоров (метод 4).

Наиболее близким по технической сути и достигаемому техническому результату является способ получения титанатов типа МеТiO3, заключающийся во взаимодействии смеси водных нитратных растворов соединений Me2+ и Ti(IV) с раствором NН3 с последующим осаждением промежуточных фаз, которые при t≈1000°C разлагаются с образованием целевого продукта МеТiO3 (Me=Ca, Sr, Ва) [15].

Заявляемый в качестве изобретения способ позволяет снизить температуру синтеза фаз указанного типа в среднем на 500К и в повысить пьезопараметры материалов на основе сегнетоэлектрических фаз с различным типом структуры.

Технический результат достигается тем, что первичная целевая аморфная фаза формируется при температуре ниже 280 К в нитратно-аммиачном буферном растворе за счет взаимодействия предварительно синтезированных нанокластеров гидроксидов р- и d-элементов, имеющих сходное строение и состав с подрешеткой В целевой фазы кислородно-октаэдрического типа, с суспензией, состоящей из насыщенного раствора и порошка твердой фазы нитрата элемента, формирующего подрешетку А целевой фазы.

Отличными признаками является то, что в качестве прекурсоров (нанокластеров) в данном процессе используются полимерные α-формы гидроксидов p- и d-элементов (гидроксид железа (III), титана (IV), марганца (IV) циркония (IV), олова (IV), гафния (IV), ниобия (V) и тантала (V)) (фиг.2), осажденные при температурах ниже 280 К из 0,1-0,3М растворов их нитратных комплексов при рН 8±0,5 с помощью 5-10% раствора аммиака. Под нанокластерами понимаются отдельные частицы, из совокупности которых состоят полимерные α-формы гидроксидов p- и d-элементов. Строение, а также количественный состав нанокластеров варьируется в зависимости от параметров процесса синтеза.

Сущность изобретения поясняется рисунками фиг.1 - строение фазы со структурой типа перовскита состава МЭО3, фиг.2 - структура слоя оловой формы гидроксида, примерами 1-18 и таблицей 1 - Параметры процесса синтеза фазы PbTi0,5Zr0,5O3 и электрофизические свойства керамики, изготовленной на ее основе, а также таблицей 2 - Электрофизические параметры (ЭФП) керамических пьезоматериалов, изготовленные из порошков, синтезированных различными методами.

Пример 1. 100 мл 0,3М раствор Н2[Тi(NO3)6] при температуре 270-280 К нейтрализуют 5% раствором аммиака до рН 8. Образовавшуюся оловую форму гидроксида Ti(IV), представляющую собой совокупность нанокластеров переменного состава, отделяют от маточного раствора центрифугированием и переносят в реактор, охлажденный до 270 К. К гидроксиду добавляют суспензию, содержащую 9,93 г Рb(NO3)2 в 10 мл аммиачно-нитратного буферного раствора. Образующуюся смесь перемешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки. По окончании процесса система расслаивается, что позволяет отделить твердый первичный продукт реакции состава РbТiO3 от жидкой фазы методом фильтрования или декантации. Первичный продукт сушат при температуре ≈330 К в течение 30 минут и затем для активации процесса первичной рекристаллизации прокаливают при 600-700 К (время изотермической обработки 20-30 минут). Выход кристаллического РbТiO3 9,03 г (более 99% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 2-2,5 часа.

Пример 2. 100 мл 0,3М раствор Н2[Zr(NO3)6] при температуре 270-280 К нейтрализуют 5% раствором аммиака до рН 8. Образовавшуюся оловую форму гидроксида Zr(IV), представляющую собой совокупность нанокластеров переменного состава, отделяют от маточного раствора центрифугированием и переносят в реактор, охлажденный до 270 К. К гидроксиду добавляют суспензию, содержащую 9,93 г Рb(NO3)2 в 10 мл аммиачно-нитратного буферного раствора. Образующуюся смесь перемешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки. По окончании процесса система расслаивается, что позволяет отделить твердый первичный продукт реакции состава PbZrО3 от жидкой фазы методом фильтрования или декантации. Первичный продукт сушат при температуре ≈330К в течение 30 минут и затем для активации процесса первичной рекристаллизации прокаливают при 600-700 К (время изотермической обработки 20-30 минут). Выход кристаллического PbZrО3 10,35 г (более 99% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 2-2,5 часа.

Пример 3. 100 мл 0,3М раствор Н2[Тi(NO)3)6] при температуре 270-280 К нейтрализуют 5% раствором аммиака до рН 8. Образовавшуюся оловую форму гидроксида Ti(IV), представляющую собой совокупность нанокластеров переменного состава, отделяют от маточного раствора центрифугированием и переносят в реактор, охлажденный до 270 К. К гидроксиду добавляют суспензию, содержащую 15.8 г Вi(NO3)3 в 15 мл аммиачно-нитратного буферного раствора. Образующуюся смесь перемешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки. По окончании процесса система расслаивается, что позволяет отделить твердый первичный продукт реакции состава Bi4Ti3O12 от жидкой фазы методом фильтрования или декантации. Первичный продукт сушат при температуре ≈330 K в течение 30 минут и затем для активации процесса первичной рекристаллизации прокаливают при 600-700 К (время изотермической обработки 20-30 минут). Выход кристаллического Bi4Ti3O12 11.69 г (более 99% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 2-2,5 часа.

Пример 4. 50 мл 0,3М раствор Н2[Тi(NO3)6] при температуре 270-280 К смешивается с 50 мл 0,3М раствора Н2[Zr(NO3)6]. Полученный раствор, содержащий соединения титана и циркония, нейтрализуют 5% раствором аммиака до рН 8. Образовавшуюся оловую форму смешанного гидроксида состава Ti0,5Zr0,5O2·xH2O, представляющую собой совокупность нанокластеров переменного состава, отделяют от маточного раствора центрифугированием и переносят в реактор, охлажденный до 270 К. К гидроксиду добавляют суспензию, содержащую 9,93 г Рb(NO3)2 в 10 мл аммиачно-нитратного буферного раствора. Образующуюся смесь перемешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки. По окончании процесса система расслаивается, что позволяет отделить твердый первичный продукт реакции состава PbTi0,5Zr0,5O3 от жидкой фазы методом фильтрования или декантации. Первичный продукт сушат при температуре ≈330 К в течение 30 минут и затем для активации процесса первичной рекристаллизации прокаливают при 600-700 К (время изотермической обработки 20-30 минут). Выход кристаллического PbTi0,5Zr0,5O3 9,70 г (более 99% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 2-2,5 часа.

В примерах 5-15. Синтез фазы PbTi0,5Zr0,5O3 осуществлен способом, аналогичным примеру 4, но при других параметрах синтеза.

Пример 16. 80 мл 0,3М раствор H2[Ti(NO3)6] при температуре 270-280 К смешивается с 20 мл 0,3М раствора Н2[Sn(NO3)6]. Полученный раствор, содержащий соединения титана и олова (IV), нейтрализуют 5% раствором аммиака до рН 8. Образовавшуюся оловую форму смешанного гидроксида состава Ti0,8Sn0,2O2·xH2O, представляющую собой совокупность нанокластеров переменного состава, отделяют от маточного раствора центрифугированием и переносят в реактор, охлажденный до 270К. К гидроксиду добавляют суспензию, содержащую 5,75 г Рb(NO3)2 и 1,18 г Са(NО3)3 в 10 мл аммиачно-нитратного буферного раствора. Образующуюся смесь перемешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки. По окончании процесса система расслаивается, что позволяет отделить твердый первичный аморфный продукт реакции состава Рb0.76Са0.24Тi0,8Sn0,2O3 от жидкой фазы методом фильтрования или декантации. Первичный продукт сушат при температуре ≈330 K в течение 30 минут и затем для активации процесса первичной рекристаллизации прокаливают при 600-700 К (время изотермической обработки 20-30 минут). Выход кристаллического Рb0.76Са0.24Тi0,8Sn0,2O3 8,27 г (более 98% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 2-2,5 часа.

Пример 17. 100 мл 0,3М раствор Н2[Ti(NO3)6] при температуре 270-280 нейтрализуют 5% раствором аммиака до рН 8. Образовавшуюся оловую форму гидроксида Ti(IV), представляющую собой совокупность нанокластеров переменного состава, отделяют от маточного раствора центрифугированием и переносят в реактор, охлажденный до 270 К. К гидроксиду добавляют суспензию, содержащую 3,87 г Рb(NO3)2, 2,21 г Вi(NO3)3, 0,26 г NaNO3 и 0,08 г Мn(NO3)2 в 15 мл аммиачно-нитратного буферного раствора. Образующуюся смесь перемешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки. По окончании процесса система расслаивается, что позволяет отделить твердый первичный аморфный продукт реакции состава Pb0.39Ca0.35Na0,1Bi0,14Ti0,98Mn0,02O3 от жидкой фазы методом фильтрования или декантации. Первичный продукт сушат при температуре ≈330 K в течение 30 минут и затем для активации процесса первичной рекристаллизации прокаливают при 600-700 К (время изотермической обработки 20-30 минут). Выход кристаллического Pb0.39Ca0.35Na0,1Bi0,14Ti0,98Mn0,02O3 6,20 г (более 99% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 2-2,5 часа.

Пример 18. 46,5 мл 0,3М раствор Н[Nb(NO3)6] смешивают с 46,5 мл 0,3М раствора Fe(NO3)3 и 7 мл 0,3М раствора Н2[Тi(NO3)6]. Полученный раствор нейтрализуют 5% раствором аммиака при температуре 270-280 К до рН 8. Образовавшуюся оловую форму смешанных гидроксидов Nb(V), Fe(III) и Ti(IV), представляющую собой совокупность нанокластеров переменного состава, отделяют от маточного раствора центрифугированием и переносят в реактор, охлажденный до 270 К. К гидроксиду добавляют суспензию, содержащую 9,93 г Рb(NO3)2 в 10 мл аммиачно-нитратного буферного раствора. Образующуюся смесь перемешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки. По окончании процесса система расслаивается, что позволяет отделить твердый первичный аморфный продукт реакции состава PbTi0.07(Fe0.465Nb0.465)O3 от жидкой фазы методом фильтрования или декантации. Первичный продукт сушат при температуре ≈330 К в течение 30 минут и затем для активации процесса первичной рекристаллизации прокаливают при 600-700 К (время изотермической обработки 20-30 минут). Выход кристаллического PbTi0.07(Fe0.465Nb0.465)O3 9,68 г (более 98% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 2-2,5 часа.

Порошки пьезофаз, синтезированные по предлагаемому методу, были использованы для изготовления пьезокерамики по традиционной керамической технологии (спекание пресс-заготовок при стандартном давлении, температурах 1350-1550°С в течение 2-4 часа). Условия спекания пресс-заготовок на основе фазы фиксированного качественного и количественного состава определялись экспериментально методом построения кривых плотность - режимы спекания. Плотность исследованных образцов, имевших форму дисков с диаметром 10 мм и высотой 1 мм, была не менее 92% от теоретически возможной.

Серебряные электроды на параллельные поверхности образцов нанесены методом вжигания, поляризация пьезопреобразователей осуществлялась в силиконовом масле при напряженности электрического поля от 2 до 6 кV/мм и температурах от 300 до 400 К. Условия поляризации образцов зависели от их состава, а их оптимальные значения определялись путем анализа стандартных кривых: параметры поляризации - свойства. Пьезоэлектрические и диэлектрические параметры пьезокерамики, а также ее точка Кюри определялись по ГОСТ 12379-80.

Условия проведения процесса синтеза пьезофазы, выход продукта реакции и электрофизические свойства керамики, изготовленной на ее основе, приведены в таблице 1.

Таблица 1
Параметры процесса синтеза фазы PbTi0,5Zr0,5O3 и электрофизические свойства керамики, изготовленной на ее основе
пример См H2[Э(NO3)6] Э=Ti и Zr Tпроцесса K pH осаждения гидроксидов Ti и Zr % выхода целевой фазы εT 33о tg δ% d33 pK/H ТK К
4 0,3 270 8 99,6 1135 0,4 183 628
5 0,5 270 8 90,1 955 3,6 161 625
6 0,8 270 8 84,8 565 5,1 143 648
7 0,1 270 8 99,7 1030 0,5 194 586
8 0,2 270 8 99,4 1145 0,5 188 603
9 0,3 270 5 47,7 340 7,2 84 564
10 0,3 270 7 93,9 810 1,4 153 612
11 0,3 270 9 92,4 970 0,8 166 630
12 0,3 270 10 87,4 530 2,6 104 644
13 0,3 280 8 98,8 1060 1,1 175 612
14 0,3 290 8 82,4 440 5,9 92 587
15 0,3 300 8 66,2 390 6,2 69 570

Из таблицы 1 следует, что повышение исходной концентрации нитратных комплексов титана и циркония выше 0,3М приводит к снижению выхода целевого продукта реакции и ухудшению его диэлектрических и пьезоэлектрических параметров (примеры 5 и 6), а снижение концентрации прекурсоров ведет к снижению точки Кюри керамических пьезоматериалов (примеры 7 и 8). Также установлено, что как снижение рН осаждения гидроксидов титана и циркония из растворов прекурсоров, так и повышения значений этого параметра (по сравнению с 8±0,5) приводит к уменьшению выхода целевого продукта, значительному снижению пьезопараметров и εT33о керамических материалов, изготавливаемых на его основе, а также росту проводимости пьезокерамики (примеры 9-12). Показано, что наиболее критичным параметром состояния системы в процессе синтеза фаз кислородно-октаэдрического типа, осуществляемого методом «химической сборки», является температура (примеры 13-15). При ее значениях выше 280 К наблюдается быстрая деградация пьезоматериала, изготовленного из целевых фаз, по всем контролируемым характеристикам.

В таблице 2 приведены электрофизические параметры керамических пьезоматериалов на основе фаз различного состава, имеющих в качестве подрешетки В совокупность кислородно-титановых октаэдров, соединенных вершинами. Порошки этих фаз изготовлены по предлагаемому способу и использованы для изготовления пьезокерамики. ЭФП этих керамических пьезоматериалов приведены в сравнении с литературными данными, по ЭФП материалов того же состава, изготовленных по традиционной керамической технологии.

Таблица 2
Электрофизические параметры (ЭФП) керамических пьезоматериалов, изготовленные из порошков, синтезированных различными методами
ЭФП Фаза РbTi0,45Zr0,55O3 получена Фаза Bi4Ti3O12 получена
МТФР [3] предлагаемым способом МТФР [21] предлагаемым способом
εT 33о 460-480 750-780 80-85 145-155
d33 pK/H 180-200 240-260 ≤6 17-19
d31 pK/H 70-80 95-110 - -
tgδ в % 2,4-3,7 0,4-1,2 1,8-5,4 0,8-1,7
ЭФП Фаза Pb0.76Ca0.24Ti0,8Sn0,2O3 получена Фаза Рb0.39Са0.35Na0,1Bi0,14Тi0,98Мn0,02Oз получена
МТФР [20] предлагаемым способом МТФР предлагаемым способом
εT 33o 260-280 330-360 380-470 550-580
d33 pK/H 42-47 65-73 56-61 100-110
d31 pK/H 7-8 9-11 10-12 14-16
tgδ в % 1,9-4,2 0,2-0,5 2,2-3,5 0,3-0,6
ЭФП Фаза PbTi0.07(Fe0.465Nb0.465)O3 получена
МТФР [22] предлагаемым способом
εT 33о 2300-2450 3050-3200
d33 pK/H 255-295 320-360
d31 pK/H 120-145 155-170
tgδ в % 2,6-6,3 1,6-2,5

Предложенный технический результат позволяет повысить пьезопараметры материалов на основе сегнетоэлектрических фаз с различным типом структуры, при значительно снижении температуру синтеза фаз, указанного типа в среднем на 500К.

Источники информации

1. Пьезоэлектрические элементы в приборостроении и автоматике. Джагупов Р.Г., Ерофеев А.А. - М., Машиностроение, 1986. 256 с.

2. Сегнето- и антисегнетоэлектрики семейства титаната бария. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. - М.: «Химия», 1985. 256 с.

3. Иона Ф., Ширане Д. Сегнетоэлектрические кристаллы. - М.: «Мир», 1965. 555 с.

4. Твердофазные реакции. Третьяков Ю.Д. - М.:«Химия», 1978. 360 с.

5. Введение в керамику. Кингери У.Д. - М.: Издательство по строительству, 1967. 500 с.

6. Химические методы получения современных керамических конденсаторных материалов. Лимарь Т.Ф., Борщ А.Н., Слатинская И.Г., Мудролюбова Л.П., Ненашева Е.А. М.: НИИТЭХИМ. 1998. 62 с.

7. Физико-химические основы получения, свойства и применение ферритов. Левин Б.Е., Третьяков Ю.Д., Летюк Л.М. - М.: Металлургия, 1979. - 470 с.

8. Основы криохимической технологии. Третьяков Ю.Д., Олейников Н.Н., Можаев А.П. М, "Высшая школа", 1987. 211 с.

9. Химия твердого тела. Кнотько А.В., Пресняков И.А., Третьяков Ю.Д. М.: Академия, 2006. - 304 с.

10. Технология керамических диэлектриков. Окадзаки К. /Пер. с яп. М.: Энергия. 1976. С.336.

11. Сравнительная оценка титаната бария, полученного разными способами. Лимарь Т.Ф., Барабанщикова P.M., Савоськина А.И., Величко Ю.Н. // Электронная техника. Сер.8. «Радиодетали». 1971. Вып.2. (23). - С.33-41.

12. Technologie und Anwendungen von Ferroelectrica. Bauer A., Buhling D., Gesemann H.-J., Helke G., Screckenbach W. // Leipzig.: Academie Ferlagssgesellschaft Geest & Portig K.-G. 1976. S.548.

13. Кинетика гидротермального синтеза метатитаната бария. Овраменко Н.А., Швец Л.И., Овчаренко Ф.Д., Корнилович Б.Ю. / Изв. АН СССР. Неорг. матер. 1979. Т.15, №11. - С.1982-1985.

14. Hydrothermal ВаТiO3 - based aqueous slurries. Venigalla S., Clancy D.J., Miller D.V., Kerchner J.A., Costantino S.A. // Amer. Cer. Soc. Bull. V.78, №10. 1999. P.51-54.

15. Исследование гидроокисей титана, циркония и совместно осажденных гидроокисей титана и свинца, циркония и свинца. Беляев И.Н., Артамонова С.М. // Журн. неорган, химии. 1966. 11. №3. - С.464-467.

16. Труды Международной научно-практической конференции «Фундаментальные проблемы пьезоэлектрического приборостроения». Нестеров А.А., Лупейко Т.Г., Нестеров А.А./.1999. - С.254-261.

17. Влияние способа синтеза на электрофизические свойства керамики состава Pb0,76Ca0,24Ti0,94(Cd0,5W0,5)0,06O3. Нестеров А.А., Лупейко Т.Г., Нестеров А.А., Пустовая Л.Е. Неорганические материалы. - 2004. - Т.40., №12. С.1530-1534.

18. Особенности синтеза манганит лантановых перовскитов. Забелина А.Э., Прилипко Ю.С.// Сборник научных трудов "Вестник Донбасской национальной академии строительства и архитектуры". Донбас. 2007. 167 с.

19. Перспективы применения алкоксотехнологии в гетерогенном катализе. Родионова Ю.М., Слюсаренко Е.М., Лунин В.В. // Успехи химии. 1996. 65. №9. - С.865-879.

20. Доменная структура, микроструктура, электрофизические свойства сегнетокерамики на основе Bi4Ti3O12. Экнадиосянц Е.И., Проскуряков Л.М. Пьезоэлектрические материалы и пьезопреобразователи. Ростов- на Дону. 1989. Вып.8. С.19-26.

Способ получения фаз кислородно-октаэдрического типа, включающий в себя на первом этапе формирование исходной матрицы (нанокластеров), являющихся полимерными α-формами гидроксидов р- и d-элементов, представляющих собой совокупность нанокластеров переменного состава, строение и состав которых сходны со строением подрешетки В целевой фазы кислородно-октаэдрического типа, которые осаждаются при температурах ниже 280°К из 0,1-0,3 М растворов нитратных комплексов этих элементов при рН 8±0,5 с помощью 5-10%-ного раствора аммиака, на втором этапе взаимодействие этих нанокластеров в аммиачно-нитратном буферном растворе при температурах ниже 280°К, с насыщенными растворами нитратов различных элементов состава MeNO, Me(NO) и Ме(NО).
Источник поступления информации: Роспатент

Showing 1-10 of 17 items.
10.03.2013
№216.012.2ebe

Гидроакустическая навигационная система

Использование: в гидроакустических навигационных системах. Сущность: гидроакустическая навигационная система содержит навигационную базу из М гидроакустических приемоответчиков с различными частотами ответа, гидроакустический приемопередатчик, аппаратуру измерения временных интервалов...
Тип: Изобретение
Номер охранного документа: 0002477497
Дата охранного документа: 10.03.2013
20.07.2013
№216.012.56e1

Способ получения порошков фаз слоистых титанатов s- и p-элементов

Изобретение относится к способам получения порошков фаз слоистых титанатов ряда s- и p-элементов (ВСПС), которые являются основой пьезоматериалов, широко применяющихся в современной аэрокосмической промышленности. Предлагаемый способ получения фаз слоистых титанатов типа BiABO (A=Na, Ca, Cr,...
Тип: Изобретение
Номер охранного документа: 0002487849
Дата охранного документа: 20.07.2013
20.11.2013
№216.012.8316

Способ контроля добротности пьезорезонаторов и устройство для его осуществления

Использование: для контроля добротности пьезорезонагоров. Сущность: возбуждают колебания пьезорезонатора в области резонанса путем воздействия на него электрическим синусоидальным напряжением с переменной частотой, одновременно выделяют активную составляющую проводимости и выполняют ее...
Тип: Изобретение
Номер охранного документа: 0002499234
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.8813

Способ поверхностного пластического деформирования цилиндрических деталей

Изобретение относится к поверхностному пластическому деформированию цилиндрических деталей. Сообщают ролику движение подачи вдоль оси обрабатываемой детали. Создают колебательные движения ролику посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002500517
Дата охранного документа: 10.12.2013
10.04.2014
№216.012.b72a

Акустооптический спектроанализатор

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве широкополосного измерителя частоты радиосигналов. Технический результат, заключающийся в расширении полосы рабочих частот, достигается тем, что в акустооптический спектроанализатор, содержащий в своем...
Тип: Изобретение
Номер охранного документа: 0002512617
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c222

Способ получения порошков фаз кислородно-октаэдрического типа, содержащих ионы свинца (ii) в позиции (а)

Изобретение может быть использовано в полупроводниковой, пьезоэлектрической и радиоэлектронной технике. Для получения порошков титаната, или цирконата, или ниобата свинца, или титаната-цирконата свинца из 0,1-0,3М растворов нитратных комплексов титана, циркония или ниобия при рН=8±0,5 осаждают...
Тип: Изобретение
Номер охранного документа: 0002515447
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c4cf

Способ модифицирования поверхности титана

Изобретение относится к области гальванотехники и может быть использовано в промышленности для формирования тонких слоев защитно-декоративных покрытий нитрида титана на поверхностях из титана и его сплавов. Способ электролитического формирования слоя нитрида титана на поверхности титана и его...
Тип: Изобретение
Номер охранного документа: 0002516142
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cd7a

Радиолокационный уровнемер

Радиолокационный уровнемер относится к радиотехнике и может быть использован для построения высокоточных измерителей уровня жидкостей или сыпучих веществ в резервуарах и высотомеров малых высот. Радиолокационный уровнемер содержит высокостабильный генератор 1, делители 2 и 3 частоты, контроллер...
Тип: Изобретение
Номер охранного документа: 0002518373
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d37c

Рециркуляционный радиовысотомер

Изобретение относится к радиолокационной технике и может быть использовано при разработке бортовых средств измерения высоты полета летательных аппаратов. Рециркуляционный радиовысотомер содержит генератор старт-импульсов, генератор тактовых импульсов, два элемента И, два элемента ИЛИ, три...
Тип: Изобретение
Номер охранного документа: 0002519911
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d37f

Импульсный радиовысотомер

Изобретение относится к радиолокационной технике и может быть использовано для измерения высоты полета летательного аппарата при малых и сверхмалых высотах его полета. Достигаемый технический результат - упрощение радиовысотомера, повышение его надежности и помехозащищенности и расширение...
Тип: Изобретение
Номер охранного документа: 0002519914
Дата охранного документа: 20.06.2014
Showing 1-10 of 15 items.
20.07.2013
№216.012.56e1

Способ получения порошков фаз слоистых титанатов s- и p-элементов

Изобретение относится к способам получения порошков фаз слоистых титанатов ряда s- и p-элементов (ВСПС), которые являются основой пьезоматериалов, широко применяющихся в современной аэрокосмической промышленности. Предлагаемый способ получения фаз слоистых титанатов типа BiABO (A=Na, Ca, Cr,...
Тип: Изобретение
Номер охранного документа: 0002487849
Дата охранного документа: 20.07.2013
10.05.2014
№216.012.c222

Способ получения порошков фаз кислородно-октаэдрического типа, содержащих ионы свинца (ii) в позиции (а)

Изобретение может быть использовано в полупроводниковой, пьезоэлектрической и радиоэлектронной технике. Для получения порошков титаната, или цирконата, или ниобата свинца, или титаната-цирконата свинца из 0,1-0,3М растворов нитратных комплексов титана, циркония или ниобия при рН=8±0,5 осаждают...
Тип: Изобретение
Номер охранного документа: 0002515447
Дата охранного документа: 10.05.2014
10.06.2015
№216.013.51fc

Пьезокерамический материал для изготовления слоистых гетероструктур

Изобретение относится к области пьезокерамических материалов, предназначенных для изготовления многослойных ультразвуковых устройств в виде слоистых гетероструктур, являющихся основой различных пьезодатчиков (давления, медицинской диагностики, эмиссионного контроля гидроакустической аппаратуры...
Тип: Изобретение
Номер охранного документа: 0002552509
Дата охранного документа: 10.06.2015
13.01.2017
№217.015.8b36

Композиционный пьезокерамический материал

Изобретение относится к композиционным керамическим пьезоэлектрическим материалам на основе фаз кислородно-октаэдрического типа и может быть использовано для изготовления гидроакустических устройств, а также приборов СВЧ и УЗ диапазонов, приборов точного позиционирования объектов (литография,...
Тип: Изобретение
Номер охранного документа: 0002604359
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.ab92

Способ изготовления керамических пьезоматериалов из нано- или ультрадисперсных порошков фаз кислородно-октаэдрического типа

Изобретение относится к способу изготовления керамических пьезоматериалов из нано- и ультрадисперсных порошков фаз кислородно-октаэдрического типа, содержащих в позиции (В) ионы титана (IV), ниобия (V), циркония (IV), вольфрама (VI). цинка (II), никеля (II) и железа (III), кобальта (III) и...
Тип: Изобретение
Номер охранного документа: 0002612174
Дата охранного документа: 02.03.2017
26.08.2017
№217.015.e450

Способ поляризации пьезокерамических элементов и устройство для его осуществления

Изобретение относится к производству пьезокерамических элементов (ПКЭ) и предназначено для поляризации в воздушной среде крупногабаритных изделий из сегнетожестких материалов с температурой Кюри до 350°C в условиях серийного производства. Технический результат: уменьшение разброса...
Тип: Изобретение
Номер охранного документа: 0002626304
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e8c8

Пьезоэлектрический акселерометр

Изобретение относится к датчикам для измерения вибрационных и ударных ускорений сложных технических объектов, работающих в условиях экстремальных механических перегрузок. Техническим результатом является снижение чувствительности пьезоэлектрического акселерометра к деформации контролируемого...
Тип: Изобретение
Номер охранного документа: 0002627571
Дата охранного документа: 08.08.2017
20.01.2018
№218.016.1119

Способ получения пьезокерамического материала на основе цирконата-титаната свинца

Изобретение относится к технологии получения пьезокерамического материала ЦТС-19, который может быть использован в качестве пьезоактивной составляющей композиционных материалов со связностями 1-3 и 3-3, используемых в приемной аппаратуре в гидроакустике и медицине. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002633935
Дата охранного документа: 19.10.2017
20.02.2019
№219.016.bc51

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано в вычислительной технике для создания матриц памяти запоминающих устройств. Техническим результатом изобретения является снижение коэрцитивной силы при сохранении достаточно высоких значений...
Тип: Изобретение
Номер охранного документа: 0002680155
Дата охранного документа: 18.02.2019
01.03.2019
№219.016.d061

Силикатная масса (варианты)

Изобретение относится к производству строительных материалов и изделий, в частности стеновым силикатным изделиям автоклавного твердения. Технический результат - повышение прочности и морозостойкости. Силикатная масса, содержащая кварцевый песок, известково-кремнеземистое вяжущее, состоящее из...
Тип: Изобретение
Номер охранного документа: 0002467973
Дата охранного документа: 27.11.2012
+ добавить свой РИД