×
29.03.2019
219.016.f833

Результат интеллектуальной деятельности: СПОСОБ ОСУШКИ ВНУТРЕННИХ МАГИСТРАЛЕЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ

Вид РИД

Изобретение

№ охранного документа
0002170608
Дата охранного документа
20.07.2001
Аннотация: Изобретение относится к космической технике, конкретно к способам осушки магистралей гидравлических систем терморегулирования после слива теплоносителя из системы. Способ осушки внутренних магистралей системы терморегулирования включает многократные последовательные операции вакуумирования и наддува магистралей сухим газом, причем перед первым циклом вакуумирования измеряют внутренний объем системы после слива теплоносителя и температуру слитого теплоносителя, каждую операцию вакуумирования осуществляют до давления ниже давления насыщенных паров слитого теплоносителя при измеренной температуре, каждую операцию наддува системы сухим газом осуществляют после достижения в системе давления насыщенных паров при измеренной температуре, при этом количество последовательных циклов вакуумирования и наддува выбирают из соотношения где V - объем магистрали, измеренный перед заправкой системы теплоносителем; V - объем системы, измеренный после слива теплоносителя; К - коэффициент парообразования теплоносителя. Изобретение позволяет достичь полной осушки гидравлических магистралей от теплоносителя.

Изобретение относится к космической технике, конкретно к способам осушки магистралей гидравлических систем терморегулирования после слива теплоносителя из системы.

При наземной подготовке космических объектов периодически возникает необходимость слива теплоносителя из гидравлических систем терморегулирования. Это требуется в том случае, когда в результате наземной подготовки выявляется необходимость доработки материальной части системы или перезаправки системы в случае выявления внутри магистрали воздушных пузырей, попавших в систему вместе с теплоносителем вследствие ошибок при заправке системы.

Поскольку системы терморегулирования являются сложными пространственными системами, имеющими разветвленную сеть трубопроводов, включая агрегаты, закольцовки и тупиковые зоны, полный слив теплоносителя из такой системы невозможен.

Поэтому в системе после слива остается, как правило, от 1 до 10% теплоносителя. В качестве теплоносителей применяют различные специальные теплоносители как на водных растворах, так и различные хладоны.

После слива теплоносителя такие магистрали сушат, причем к осушке предъявляются высокие требования, поскольку остаток теплоносителя в системе не позволяет достичь глубокого вакуума в системе 1-1,5 мм рт.ст., обеспечивающего необходимое качество заправки (минимальное количество воздуха в системе).

Способы осушки гидромагистралей от остатков жидкого теплоносителя можно разделить на два основных вида: осушку продувкой сухим газом или газообразным хладагентом и осушку путем вакуумирования магистралей.

В холодильной технике часто используется способ осушки, при котором остатки влаги удаляются посредством подогрева участков магистрали и продувкой их сухим азотом. Этот способ описан в журнале "Холодильная техника" N 5, 1996 г. с.15 (рис.1). Недостатком этого способа является необходимость расхода сухого азота и расхода горючих газов, если для разогрева используется газовая горелка.

В книге авторов И.Г.Чумака и др. "Холодильные установки" Москва, "Легкая и пищевая промышленность", 1982, с. 325 для удаления влаги и воздуха перед заправкой фреоном крупные установки вакуумируют до остаточного давления 5,33 кПа, а малые герметичные установки - до давления 13 Па. Согласно ГОСТ 17240-71 герметичные компрессоры должны сушиться в печи с продувкой сухим воздухом. Статоры встроенных электродвигателей подвергают длительной вакуумно-термической осушке с электроподогревом обмоток током пониженного напряжения. Эти способы требуют стационарного оборудования для сушки, например, печи. Кроме того, сушка систем в печи может осуществляться только для систем небольших размеров.

В книге В.Б.Якобсона "Малые холодильные машины", Москва, "Пищевая промышленность", 1977 г. с. 337-339 описан способ осушки гидромагистралей, при котором их продувают сухим воздухом в течение нескольких часов, при этом сухость воздуха определяется по точке росы, которая не должна превышать -50oC. Этот способ практически невозможно использовать для систем сложной геометрической формы, где мала площадь контакта жидкости с воздухом.

В книге В.Б. Якобсона "Малые холодильные машины", Москва, изд. "Пищевая промышленность", 1977 г. на стр. 339 описан способ, при котором гидромагистрали вакуумируют до давления 0,1 мм рт.ст. (13 Па), при этом обеспечивается удаление кислорода и дополнительная сушка.

Однако вакуумирование до такого давления относительно быстро (0,5- 1 час) можно осуществить в системах простой формы и с малым внутренним объемом. Для систем сложной пространственной формы с большими внутренними объемами реализация осушки по данному способу потребует либо очень мощных и, соответственно, дорогих вакуум-насосов или при обычных для практики насосах растянется на многие часы.

Описанные способы применяют для гидравлических контуров простой конфигурации, которая характерна для малых холодильных машин. Обязательным условием использования способа осушки продувкой сухим воздухом является отсутствие тупиковых зон, т.е. воздух должен проходить через все участки контура и желательно полным расходом. Естественно, что при этом расходуется значительное количество сухого воздуха или азота.

Необходимость подогрева осушаемых магистралей при сушке продувкой также является существенным недостатком данного способа.

Осушку гидромагистралей вакуумированием используют для средних и крупных холодильных установок при их перезаправке.

Один из самых распространенных способов осушки крупных гидравлических систем сложной пространственной формы, к каким можно отнести крупные промышленные холодильные установки, описан в справочнике "Эксплуатация холодильников", Москва, "Пищевая промышленность, 1977 г., с. 35. Для осушки таких систем от остаточной влаги ее вакуумируют до остаточного давления 10 мм рт. ст. При указанном остаточном давлении отсос производят в течение 3-4 часов под вакуумом, после чего под этим вакуумом систему выдерживают в течение 24 часов. Его основным недостатком является большая затрата времени на процесс сушки.

В справочнике "Эксплуатация холодильников", Москва, "Пищевая промышленность, 1977 г. , стр. 47-48 описан способ сушки с двукратным вакуумированием, причем первый раз вакуумирование осуществляют до промежуточного давления 40 мм рт.ст., после чего система заполняется парами теплоносителя, затем осуществляется повторное вакуумирование уже до более глубокого вакуума 0,1 мм рт. ст. К недостаткам данного способа следует отнести то обстоятельство, что он может применяться только для систем, заправляемых легкокипящими теплоносителями (или хладагентами, как их называют в холодильной технике). В системах терморегулирования космических аппаратов такие хладагенты применяются только в бортовых компрессионных машинах. Основные же контуры системы терморегулирования объемом от 40 до 200 литров (их количество достигает 4-6) заправляются теплоносителями с высокой температурой кипения для того, чтобы при возможной разгерметизации контура внутри гермоотсека не происходило бы интенсивное испарение теплоносителя и попадание его внутрь обитаемого объема космического объекта. Поэтому данные способы малоприменимы для осушки гидравлических контуров систем терморегулирования.

Недостатком способа-прототипа является то, что он не учитывает количество оставшегося в системе теплоносителя и его свойства. Поэтому жестко установленное количество циклов (3 цикла) не всегда полностью осушают гидромагистрали сложной формы, имеющие трубопроводы малого диаметра, в том числе тупиковые зоны, в которых, как правило, после слива остается значительное количество теплоносителя. Кроме того, коэффициент парообразования теплоносителя также влияет на степень осушки системы. В тупиковых зонах, в которых площадь испаряемой поверхности очень мала, добиться выхода теплоносителя из этих участков можно только лишь вакуумируя систему до давления ниже давления насыщенных паров, при котором хладагент интенсивно испаряется и его пары занимают практически весь объем системы.

Задачей предлагаемого изобретения является разработка способа осушки, позволяющего гарантированно удалять остатки теплоносителя из сложных пространственных систем с малой площадью контакта поверхности теплоносителя с воздухом внутри системы, при котором за минимально возможное время будет достигнута полная осушка гидравлических магистралей от теплоносителя.

Поставленная задача решается благодаря тому, что в способе осушки внутренних магистралей системы терморегулирования, включающем многократные последовательные операции вакуумирования и наддува магистралей сухим газом, перед первым циклом вакуумирования измеряют внутренний объем системы после слива теплоносителя и температуру слитого теплоносителя, каждую операцию вакуумирования осуществляют до давления ниже давления насыщенных паров слитого теплоносителя при измеренной температуре, каждую операцию наддува системы сухим газом осуществляют после достижения в системе давления насыщенных паров при измеренной температуре, при этом количество последовательных циклов вакуумирования и наддува выбирают из соотношения

где Vизм.0 - объем магистрали, измеренный перед заправкой системы теплоносителем;
Vизм.1 - объем системы, измеренный после слива теплоносителя;
К - коэффициент парообразования теплоносителя.

Измерение объема внутренних магистралей после слива теплоносителя позволяет определить количество оставшегося в системе теплоносителя, что дает возможность начать осушку, зная конкретное количество оставшейся жидкости. Измерение температуры слитого теплоносителя дает возможность точно определить давление насыщенных паров оставшейся в системе жидкости, поскольку это давление может сильно меняться в зависимости от температуры. Вакуумирование магистрали с остатками теплоносителя до давления ниже давления насыщенных паров слитого теплоносителя при измеренной температуре позволяет испариться внутри системы максимально возможному количеству оставшейся жидкости (но не более того количества, которое займет в оставшемся объеме системы при давлении насыщенных паров). Последующий наддув системы сухим воздухом позволяет связать парообразный теплоноситель и вывести его из системы при последующем вакуумировании. Результаты экспериментального исследования данного способа на модельной установке с прозрачными трубками показали, что пары теплоносителя интенсивно испаряются и выходят из тупиковых зон системы при вакуумировании системы до давления ниже давления насыщенных паров. Хотя в процессе последующего наддува небольшая часть паров осаждается на внутренних стенках труб, затем при последующем вакуумировании эта часть испаряется, смешивается с сухим воздухом и выходит из системы на следующем цикле.

Расчетная формула, учитывающая объем системы перед заправкой, объем системы после слива теплоносителя и коэффициент парообразования теплоносителя позволяет точно определить количество циклов вакуумирования и наддува, необходимых для полного удаления теплоносителя из системы.

Наддув магистралей сухим воздухом вместо наддува их сухим газом позволяет уменьшить потребные эксплуатационные расходы при реализации способа.

Конкретную реализацию предложенного способа рассмотрим на примере осушки внутренних магистралей системы терморегулирования служебного модуля международной космической станции.

В процессе наземной подготовки системы терморегулирования в одном из контуров вышел из строя гидравлический насос, обеспечивающий циркуляцию теплоносителя в контуре. Для его замены потребовалось слить теплоноситель из контура системы, причем магистрали, измеренный перед заправкой системы теплоносителем Vизм.0 был равен 40 литров. Теплоноситель был слит в сливной бак заправочной станции. Измеренная температура слитого теплоносителя, равная 26oC, соответствовала среднемассовой температуре магистрали с остатками теплоносителя.

После этого с помощью стандартного газового счетчика типа ГСБ-400 измерили объем магистрали контура Vизм.1 после слива теплоносителя. Его величина составила 36 литров. Разница между объемами в 4 литра и является объемом теплоносителя, оставшегося в системе после слива.

Коэффициент парообразования специального хладагента, используемого в системе, равен К=43 (1 литр теплоносителя при давлении насыщенных паров образует 43 литра насыщенного пара). Тогда количество циклов, необходимое для полного удаления теплоносителя из системы, составит n = ((40-36)•36)/43 = 4,3. Округляя это значение до целой величины в большую сторону, получаем, что для полного удаления данного количества теплоносителя достаточно 5 циклов вакуумирования и наддува.

Естественно, что для других теплоносителей и объемов количество циклов будет меняться в широких диапазонах, при этом, в соответствии с данным способом, можно всегда достаточно точно определить конкретное число циклов для полной осушки. При этом процесс сушки заметно ускоряется, поскольку не требуется глубокого вакуумирования системы.

Первое вакуумирование магистрали осуществляют до давления на 3-4 мм рт. ст ниже давления насыщенных паров теплоносителя при измеренной температуре. Для теплоносителя служебного модуля это давление при температуре 26oC составит 20 мм рт.ст. После того как только давление в системе достигнет давления насыщенных паров (по опыту 8 - 10 минут), производится наддув системы сухим газом до давления, не выше максимального рабочего давления в системе. Затем давление стравливается из системы и начинается операция повторного вакуумирования. После пяти последовательных циклов операция осушки была закончена, что было подтверждено исследованием газа, стравленного из системы в процессе последнего цикла.

Данный способ после экспериментальной отработки на модельной установке гидравлического стенда служебного модуля прошел промышленную апробацию при сушке рабочих магистралей наружного контура охлаждения системы терморегулирования служебного модуля, а также при ремонте системы терморегулирования транспортного корабля "Союз".

В настоящее время способ рекомендован для реализации на борту международной космической станции при проведении ремонтно-восстановительных работ и введен в бортовую документацию.

Способосушкивнутреннихмагистралейсистемытерморегулирования,включающиймногократныепоследовательныеоперациивакуумированияинаддувамагистралейсухимгазом,отличающийсятем,чтопередпервымцикломвакуумированияизмеряютвнутреннийобъемсистемыпослесливатеплоносителяитемпературуслитоготеплоносителя,каждуюоперациювакуумированияосуществляютдодавлениянижедавлениянасыщенныхпаровслитоготеплоносителяприизмереннойтемпературе,каждуюоперациюнаддувасистемысухимгазомосуществляютпоследостижениявсистемедавлениянасыщенныхпаровприизмереннойтемпературе,приэтомколичествопоследовательныхцикловвакуумированияинаддувавыбираютизсоотношениягдеV-объеммагистрали,измеренныйпередзаправкойсистемытеплоносителем;V-объемсистемы,измеренныйпослесливатеплоносителя;K-коэффициентпарообразованиятеплоносителя.
Источник поступления информации: Роспатент

Showing 11-20 of 71 items.
20.03.2019
№219.016.e384

Топливный модуль

Изобретение относится к космической технике и касается создания космических летательных аппаратов. Топливный модуль содержит топливные баки горючего и окислителя и систему наддува топливных баков с баллонами высокого давления, закрепленными посредством опор и первых и вторых кронштейнов на...
Тип: Изобретение
Номер охранного документа: 0002266242
Дата охранного документа: 20.12.2005
20.03.2019
№219.016.e3ed

Устройство для контроля частоты вращения

Изобретение относится к измерительной технике. В устройство, содержащее датчик частоты вращения, формирователь импульсов, блок измерения, блок анализа информации, блок управления и первый формирователь имитационных сигналов, причем первый вход блока управления является входом "Запуск проверки",...
Тип: Изобретение
Номер охранного документа: 02240565
Дата охранного документа: 20.11.2004
20.03.2019
№219.016.e4f9

Многоканальный командный аппарат с электронной коммутацией

Предлагаемое изобретение относится к области электронной техники и автоматики и может быть использовано для формирования импульсных команд управления исполнительными органами. Технический результат заключается в увеличении быстродействия путем обеспечения возможности одновременной выдачи...
Тип: Изобретение
Номер охранного документа: 0002340925
Дата охранного документа: 10.12.2008
20.03.2019
№219.016.e722

Устройство для дефектации в полете заправленной рабочим телом гидравлической магистрали системы терморегулирования пилотируемого космического объекта и способ его эксплуатации

Изобретения относятся к области терморегулирования и управления параметрами окружающей среды на борту пилотируемого космического объекта. Предлагаемое устройство включает в себя манометр абсолютного давления, вакуумный насос и герметичную емкость, разделенную эластичной диафрагмой на жидкостную...
Тип: Изобретение
Номер охранного документа: 0002322377
Дата охранного документа: 20.04.2008
20.03.2019
№219.016.e723

Коммутатор напряжения с защитой от перегрузок по току

Изобретение относится к области электронной техники. Технический результат заключается в увеличении функциональной надежности за счет исключения повторного включения после срабатывания защиты от перегрузки по току. Для этого устройство содержит последовательно соединенные датчик тока нагрузки и...
Тип: Изобретение
Номер охранного документа: 0002322744
Дата охранного документа: 20.04.2008
29.03.2019
№219.016.ef31

Побудитель циркуляции жидких теплоносителей, преимущественно для системы терморегулирования космического объекта

Изобретение относится к средствам терморегулирования, снабженным электронасосными агрегатами (ЭНА) в контуре циркуляции теплоносителя. Предлагаемое устройство содержит два или более ЭНА, установленных в силовом каркасе, соединительные трубопроводы с гидроразъемами стыковки с внешней...
Тип: Изобретение
Номер охранного документа: 0002285641
Дата охранного документа: 20.10.2006
29.03.2019
№219.016.effe

Система наддува топливных баков горючего и окислителя

Система наддува топливных баков горючего и окислителя двигательных установок космических летательных аппаратов содержит пневмомагистрали, связанные с системами наддува и газовыми полостями топливных баков горючего и окислителя, и установленные в каждой пневмомагистрали пускоотсечной клапан,...
Тип: Изобретение
Номер охранного документа: 0002255241
Дата охранного документа: 27.06.2005
29.03.2019
№219.016.f85a

Отсек летательного аппарата

Изобретение относится к аэрокосмической технике и может быть использовано при определении аэродинамических нагрузок, действующих на отсеки летательных аппаратов и размещаемые там изделия. Предлагаемый отсек содержит оболочку, на боковой поверхности которой выполнено дренажное отверстие, и...
Тип: Изобретение
Номер охранного документа: 0002164883
Дата охранного документа: 10.04.2001
10.04.2019
№219.016.ff2f

Способ обеспечения чистоты головного блока в составе ракеты космического назначения и устройство для осуществления способа

Изобретения относятся к средствам, преимущественно наземным, управления параметрами окружающей среды изделий ракетно-космической техники. Предлагаемый способ включает подачу газового компонента в верхнюю часть головного блока (ГБ) и его выброс из нижней его части. При этом в ГБ создают...
Тип: Изобретение
Номер охранного документа: 0002279375
Дата охранного документа: 10.07.2006
10.04.2019
№219.016.ff57

Способ обеспечения теплового режима и чистоты головного блока в составе ракеты космического назначения и устройство для осуществления способа

Изобретения относятся к средствам, преимущественно наземным, управления параметрами окружающей среды изделий ракетно-космической техники. Предлагаемый способ включает подачу газового компонента в верхнюю часть головного блока (ГБ) и его выброс из нижней его части. При этом в ГБ создают...
Тип: Изобретение
Номер охранного документа: 0002276651
Дата охранного документа: 20.05.2006
Showing 1-4 of 4 items.
11.03.2019
№219.016.de63

Способ заправки гидравлических систем терморегулирования космических обитаемых аппаратов

Изобретение относится к космической технике, а именно к способам заправки гидравлических систем терморегулирования транспортных грузовых и пилотируемых кораблей, модулей орбитальных станций и других изделий, посещаемых экипажем в ходе их эксплуатации. Способ включает в себя операции измерения...
Тип: Изобретение
Номер охранного документа: 02191147
Дата охранного документа: 20.10.2002
10.04.2019
№219.017.0160

Способ управления давлением в гидравлической системе терморегулирования пилотируемого космического объекта

Изобретение относится к космической технике и может быть использовано, в частности, в системах терморегулирования (СТР) долговременных модулей орбитальных станций, в ходе проведения экипажем во время полета ремонтно-профилактических работ. Предлагаемый способ включает периодическое уравнивание...
Тип: Изобретение
Номер охранного документа: 02238887
Дата охранного документа: 27.10.2004
29.05.2019
№219.017.6a88

Способ регулирования температуры теплоносителя в системе терморегулирования космического аппарата с излучательным радиатором

Изобретение относится к космической технике, конкретно к способам регулирования температуры теплоносителя в системах терморегулирования космических аппаратов (КА) с излучательным радиатором, и может использоваться при эксплуатации космических аппаратов различного назначения, преимущественно с...
Тип: Изобретение
Номер охранного документа: 02187083
Дата охранного документа: 10.08.2002
29.05.2019
№219.017.6ab3

Способ заправки теплоносителем гидравлических систем терморегулирования космических аппаратов

Изобретение относится к космической технике, а именно к способам заправки теплоносителем гидравлических систем терморегулирования широкого класса космических аппаратов (транспортные и грузовые корабли, модули орбитальных станций, разгонные ракетные блоки и т.п.). Способ включает в себя операции...
Тип: Изобретение
Номер охранного документа: 02196711
Дата охранного документа: 20.01.2003
+ добавить свой РИД