×
29.03.2019
219.016.f34b

Результат интеллектуальной деятельности: МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ядерной энергетики, в частности к микротвэлам ядерного реактора. Микротвэл ядерного реактора содержит топливную микросферу и многослойное защитное покрытие, состоящее из последовательно нанесенных на топливную микросферу слоев из пироуглерода низкой плотности, высокоплотного изотропного пироуглерода, карбида циркония, титанокремнистого карбида состава TiSiC, карбида кремния и наружного слоя из высокоплотного изотропного пироуглерода. Изобретение позволяет уменьшить коррозионную повреждаемость слоя карбида кремния при воздействии на него моноокиси углерода и твердых продуктов деления в условиях термоциклирования. 1 табл.

Изобретение относится к области ядерной энергетики, в частности к микротвэлам ядерного реактора.

Микротвэл (МТ) ядерного реактора - это топливная микросфера (ТМ) из ядерного материала (UO2, PuO2, ThO2) со слоями защитного покрытия (Alien P.L., Ford L.H. and Shennan J.V. Nuclear fuel coated particle Development in the Reactor fuel element laboratories of the U.K. atomic energy authority. - Nucl. Technol., Vol.35, September, 1977, p.246-253).

В качестве защитных покрытий используют пироуглерод различной плотности - PyC, карбид кремния - SiC и карбид циркония - ZrC (Gulden T.D., Nickel H. Preface coated particle fuels. - Nucl. Technol., Vol.35, September, 1977, p.206-213).

Высокоплотный изотропный PyC является диффузионным барьером по отношению к газообразным продуктам деления (ГПД), слои SiC и ZrC служат основными силовыми слоями в МТ и диффузионными барьерами для твердых продуктов деления (ТПД).

Известен микротвэл ядерного реактора, содержащий ТМ из UO2 и четырехслойное защитное покрытие, первый слой которого выполнен из высокопористого PyC плотностью 1,10 г/см3, толщиной 97±13 мкм, второй слой - из высокоплотного изотропного PyC плотностью 1,85 г/см3 и толщиной 33±3 мкм, третий слой - из SiC плотностью 3,20 г/см3 и толщиной 34±2 мкм и четвертый (наружный) слой - из высокоплотного изотропного PyC плотностью 1,85 г/см3 и толщиной 39±3 мкм (Minato К., Sawa К., Коуа Т. et al. Fission product real ease behavior of individual coated fuel particles for High-Temperature Gas-Cooled Reactors. - Nucl. Technol. Vol.131, July 2000, p.36-47).

Недостатком указанного микротвэла ядерного реактора является повышенная проницаемость продуктов деления, например, Ag и Cs через SiC-слой, особенно при повышенных температурах облучения МТ (более 1350°С), при термоциклировании и достижении высоких значений флюенса быстрых нейтронов (более 4,0·1021 н/см2).

Известен микротвэл ядерного реактора, содержащий ТМ из UO2 и четырехслойное защитное покрытие, первый слой которого выполнен из высокопористого пироуглерода плотностью 1,11 г/см3 и толщиной 64 мкм, второй слой из высокоплотного изотропного PyC плотностью 1,84 г/см3 и толщиной 26 мкм, третий слой из карбида циркония плотностью 6,6 г/см3 и толщиной 31 мкм и четвертый (наружный) из высокоплотного изотропного PyC плотностью 1,95 г/см3 и толщиной 55 мкм (Minato К., Fukuda К., Sekino H., et al. Deterioration of ZrC-coated fuel particle caused by failure of pyrolytic carbon layer - J. of Nucl. Mater., 252 (1998) p.13-21).

Недостатком указанного микротвэла ядерного реактора является повышенная проницаемость ТПД (особенно Ag и Cs) в условиях интенсивного коррозионного воздействия СО на ZrC при разрушении второго высокоплотного изотропного PyC.

Наиболее близким аналогом-прототипом предложенному техническому решению является микротвэл ядерного реактора, содержащий топливную микросферу и многослойное защитное покрытие, в котором первый от топливной микросферы слой выполнен из низкоплотного пироуглерода, второй - из высокоплотного изотропного PyC, третий слой из карбида циркония, четвертый слой - из карбида кремния, пятый, наружный, слой - из высокоплотного изотропного пироуглерода (Патент Японии №3-108692, МКИ G21C 3/62, заявл. 22.09.89, опубл. 08.05.91).

Недостатком указанного микротвэла ядерного реактора является высокая повреждаемость карбидных слоев, особенно карбида кремния, в процессе термомеханического воздействия на микротвэл, обусловленная различиями в коэффициентах линейного термического расширения ZrC и SiC и напряжениями из-за различия параметров кристаллической решетки этих материалов. Коррозионная повреждаемость ZrC существенным образом активируется в условиях термоциклирования за счет образования оксикарбидных фаз типа ZrCxOy, имеющие большие по сравнению с ZrC анизотропные радиационные размерные изменения.

Перед авторами предложенного технического решения стояла задача - уменьшения повреждаемости слоя из SiC за счет уменьшения его коррозионного повреждения при воздействии СО и ТПД в условиях термоциклирования.

Поставленная задача решается тем, что в микротвэле ядерного реактора, содержащем ТМ и пятислойное защитное покрытие между третьим (ZrC) и четвертым (SiC) слоями микротвэл дополнительно содержит слой из титанокремнистого карбида состава Ti3SiC2.

Экспериментальные результаты указывают на то, что Ti3SiC2 обладает меньшим коэффициентом термического расширения (КЛТР), чем ZrC и близким значением КТЛР к SiC-слою. В случае разрушения слоя из ZrC слой из Ti3SiC2 является надежным барьером, предотвращающим проникновение трещин в SiC слой.

Причинно-следственная связь между существенными признаками и техническим результатом заключается в следующем. Микротвэл ядерного реактора, содержащий топливную микросферу и многослойное защитное покрытие, состоящее из последовательно нанесенных на топливную микросферу слоев из пироуглерода низкой плотности, высокоплотного изотропного пироуглерода, карбида циркония, карбида кремния и наружного слоя из высокоплотного изотропного пироуглерода, содержит дополнительно между карбидными слоями слой из титанокремнистого карбида состава Ti3SiC2.

Каждый из слоев предложенного микротвэла ядерного реактора выполняет следующие функции:

- первый низкоплотный PyC предоставляет объем для локализации ГПД, компенсирует несоответствие КЛТР между ТМ и высокоплотными слоями, защищает второй слой от повреждения осколками деления (ядрами отдачи);

- второй высокоплотный изотропный PyC является диффузионным барьером для ГПД, защищает ZrC от коррозионного воздействия продуктов деления;

- третий ZrC слой является силовым покрытием и диффузионным барьером для ТПД;

- четвертый Ti3SiC2 является компенсатором несоответствия КЛТР ZrC и последующего SiC слоя, барьером, предотвращающим распространение трещин в SiC, предохраняет от повреждений SiC-слой, а также служит геттером, поглощающим ТПД;

- пятый SiC-слой является силовым покрытием и диффузионным барьером для ТПД;

- шестой высокоплотный изотропный PyC слой является диффузионным барьером для ГПД и защищает слой из SiC от механических повреждений.

В качестве примера реализации предлагаемого микротвэла приведем следующее. На топливные микросферы (масса навески 30 г) из UO2 диаметром около 200 мкм в кипящем слое последовательно осаждают шестислойное покрытие (см. таблицу).

Таблица

В процессе облучения МТ в слоях защитных покрытий протекают существенные радиационно-химические изменения:

- PyC-слои претерпевают радиационно-размерные изменения, выражающиеся, прежде всего, в образовании радиальных трещин в низкоплотном, а затем и в высокоплотном внутреннем PyC;

- образующийся в процессе деления UO2 кислород взаимодействует с PyC с образованием СО, который по радиальным трещинам проходит к слою ZrC, вызывая его коррозию;

- в результате коррозионных повреждений слой из ZrC становится проницаемым для ТПД, а ГПД создают повышенное давление в МТ, что приводит к возникновению растягивающих напряжений в ZrC;

- в условиях термоциклирования существенно повышается вероятность разрушения слоя из ZrC и распространения трещин в SiC слой;

- введение в состав МТ слоя из Ti3SiC2 между слоями из ZrC и SiC приводит к перераспределению напряжений в многослойной конструкции покрытий так, что направления трещин, распространяющихся от слоя ZrC, получают тангенциальную составляющую, локализуются в пределах слоя Ti3SiC2 и в слой SiC не распространяются;

- одновременно слой из Ti3SiC2, имея гексагональную кристаллическую решетку (а=0,30665 нм и с=1,767 нм), является дополнительным геттером для СО и ТПД, что способствует уменьшению коррозионной нагрузки на слой SiC.

Микротвэлядерногореактора,содержащийтопливнуюмикросферуимногослойноезащитноепокрытие,состоящееизпоследовательнонанесенныхнатопливнуюмикросферуслоевизпироуглероданизкойплотности,высокоплотногоизотропногопироуглерода,карбидациркония,карбидакремнияинаружногослояизвысокоплотногоизотропногопироуглерода,отличающийсятем,чтомеждуслоямикарбидовмикротвэлдополнительносодержитслойизтитанокремнистогокарбидасоставаTiSiC.
Источник поступления информации: Роспатент

Showing 1-10 of 15 items.
20.02.2019
№219.016.be49

Способ осаждения металлических покрытий на керамические порошкообразные материалы

Изобретение относится к области газофазной металлургии, в частности к получению композиционных металлокерамических материалов. Предложен способ осаждения металлических покрытий на керамические порошкообразные материалы в кипящем слое, заключающийся в водородном восстановлении галогенидов...
Тип: Изобретение
Номер охранного документа: 0002342349
Дата охранного документа: 27.12.2008
20.02.2019
№219.016.beb3

Способ отгонки водорода из засыпки порошка гидрида циркония

Изобретение относится к области ядерной энергетики, в частности к способам, применяемым при изготовлении стержней топливных сердечников керметных тепловыделяющих элементов ядерных реакторов различного назначения. Сущность изобретения: откачку камеры производят до давления 10 мм рт.ст.,...
Тип: Изобретение
Номер охранного документа: 0002399967
Дата охранного документа: 20.09.2010
20.02.2019
№219.016.c046

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микротвэлам ядерного реактора. Микротвэл ядерного реактора содержит топливную микросферу на основе UO и многослойное защитное покрытие. Защитное покрытие состоит из последовательно нанесенных на топливную микросферу слоев из...
Тип: Изобретение
Номер охранного документа: 0002333555
Дата охранного документа: 10.09.2008
20.02.2019
№219.016.c04b

Микротвэл для сверхвысокотемпературного ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к сверхвысокотемпературным реакторам космического применения. Микротвэл для сверхвысокотемпературного ядерного реактора содержит топливную микросферу на основе UC-ZrC и четырехслойное покрытие. Первый от топливной микросферы слой...
Тип: Изобретение
Номер охранного документа: 0002333551
Дата охранного документа: 10.09.2008
29.03.2019
№219.016.f1d0

Керметный тепловыделяющий элемент водо-водяного ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к конструкции керметных тепловыделяющих элементов, применяемых в ядерных реакторах с водяным теплоносителем. Керметный тепловыделяющий элемент водо-водяного ядерного реактора состоит из циркониевой оболочки, тепловыделяющего...
Тип: Изобретение
Номер охранного документа: 0002313142
Дата охранного документа: 20.12.2007
29.03.2019
№219.016.f341

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микросферическому топливу с керамическими покрытиями. Микротвэл ядерного реактора содержит топливную микросферу из UO и многослойное покрытие, состоящее из последовательно нанесенных на топливную микросферу слоев из низкоплотного...
Тип: Изобретение
Номер охранного документа: 0002333550
Дата охранного документа: 10.09.2008
29.03.2019
№219.016.f344

Микротвэл ядерного реактора с трехслойным защитным покрытием топливной микросферы

Изобретение относится к области ядерной энергетики, в частности к микротвэлам ядерного реактора. Микротвэл ядерного реактора с трехслойным защитным покрытием топливной микросферы, в котором первый от топливной микросферы слой выполнен из композиции углерод-карбид кремния с содержанием...
Тип: Изобретение
Номер охранного документа: 0002333552
Дата охранного документа: 10.09.2008
29.03.2019
№219.016.f375

Способ изготовления керметного стержня топливного сердечника тепловыделяющего элемента ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к способам изготовления керметных стержней топливных сердечников тепловыделяющих элементов (твэл) ядерных реакторов различного назначения. В трубу из циркониевого сплава засыпают определенное количество порошков ядерного топлива и...
Тип: Изобретение
Номер охранного документа: 0002305334
Дата охранного документа: 27.08.2007
29.03.2019
№219.016.f376

Заготовка стержня топливного сердечника керметного тепловыделяющего элемента ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к конструкции заготовки, используемой при прессовании стержней топливных сердечников керметных тепловыделяющих элементов (твэл) ядерных реакторов различного назначения. Заготовка стержня состоит из трубы, изготовленной из...
Тип: Изобретение
Номер охранного документа: 0002305333
Дата охранного документа: 27.08.2007
29.03.2019
№219.016.f3b7

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микротвэлам ядерного реактора. Микротвэл ядерного реактора содержит топливную микросферу из делящегося материала и многослойное защитное покрытие. Защитное покрытие состоит из последовательно нанесенных на микросферу слоев...
Тип: Изобретение
Номер охранного документа: 0002368964
Дата охранного документа: 27.09.2009
Showing 1-10 of 22 items.
20.12.2013
№216.012.8e6b

Способ переработки уран-молибденовой композиции

Изобретение относится к области гидрометаллургии, в частности к способу переработки уран-молибденовой композиции, представляющей собой брак и отходы ядерного производства. Способ переработки уран-молибденовой композиции согласно изобретению включает окисление уран-молибденовой композиции при...
Тип: Изобретение
Номер охранного документа: 0002502142
Дата охранного документа: 20.12.2013
20.01.2015
№216.013.1ee7

Способ получения тепловыделяющего элемента высокотемпературного ядерного реактора

Изобретение относится к технологии изготовления тепловыделяющих элементов для высокотемпературных ядерных реакторов. Способ включает изготовление матрицы на основе пластин(2) из углеродных материалов, в которых выполнены посадочные места с заложенными в них микротвэлами (1) с защитными...
Тип: Изобретение
Номер охранного документа: 0002539352
Дата охранного документа: 20.01.2015
20.02.2019
№219.016.be49

Способ осаждения металлических покрытий на керамические порошкообразные материалы

Изобретение относится к области газофазной металлургии, в частности к получению композиционных металлокерамических материалов. Предложен способ осаждения металлических покрытий на керамические порошкообразные материалы в кипящем слое, заключающийся в водородном восстановлении галогенидов...
Тип: Изобретение
Номер охранного документа: 0002342349
Дата охранного документа: 27.12.2008
20.02.2019
№219.016.beb3

Способ отгонки водорода из засыпки порошка гидрида циркония

Изобретение относится к области ядерной энергетики, в частности к способам, применяемым при изготовлении стержней топливных сердечников керметных тепловыделяющих элементов ядерных реакторов различного назначения. Сущность изобретения: откачку камеры производят до давления 10 мм рт.ст.,...
Тип: Изобретение
Номер охранного документа: 0002399967
Дата охранного документа: 20.09.2010
20.02.2019
№219.016.bec3

Способ переработки уран-молибденовой композиции

Изобретение относится к области гидрометаллургии, в частности к способу переработки уран-молибденовой композиции, представляющей собой брак и отходы ядерного производства. Сущность изобретения: способ переработки уран-молибденовой композиции включает окисление уран-молибденовой композиции при...
Тип: Изобретение
Номер охранного документа: 0002395857
Дата охранного документа: 27.07.2010
20.02.2019
№219.016.bf78

Способ исследования радиационного поведения микротвэлов ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к способам исследования микротвэлов высокотемпературных газоохлаждаемых реакторов. Способ исследования радиационного поведения микротвэлов ядерного реактора заключается в облучении образцов высокоэнергетическими ионами с...
Тип: Изобретение
Номер охранного документа: 0002357302
Дата охранного документа: 27.05.2009
20.02.2019
№219.016.c046

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микротвэлам ядерного реактора. Микротвэл ядерного реактора содержит топливную микросферу на основе UO и многослойное защитное покрытие. Защитное покрытие состоит из последовательно нанесенных на топливную микросферу слоев из...
Тип: Изобретение
Номер охранного документа: 0002333555
Дата охранного документа: 10.09.2008
20.02.2019
№219.016.c04b

Микротвэл для сверхвысокотемпературного ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к сверхвысокотемпературным реакторам космического применения. Микротвэл для сверхвысокотемпературного ядерного реактора содержит топливную микросферу на основе UC-ZrC и четырехслойное покрытие. Первый от топливной микросферы слой...
Тип: Изобретение
Номер охранного документа: 0002333551
Дата охранного документа: 10.09.2008
29.03.2019
№219.016.f174

Способ переработки урансодержащей композиции

Изобретение относится к области металлургии и может быть использовано в производстве ядерного топлива. Фрагментированную урансодержащую композицию, состоящую из диоксида урана и полиэтилена, загружают в реакционную емкость с установленным над ней вытяжным зонтом. Площадь сечения зазора между...
Тип: Изобретение
Номер охранного документа: 0002396211
Дата охранного документа: 10.08.2010
29.03.2019
№219.016.f1d0

Керметный тепловыделяющий элемент водо-водяного ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к конструкции керметных тепловыделяющих элементов, применяемых в ядерных реакторах с водяным теплоносителем. Керметный тепловыделяющий элемент водо-водяного ядерного реактора состоит из циркониевой оболочки, тепловыделяющего...
Тип: Изобретение
Номер охранного документа: 0002313142
Дата охранного документа: 20.12.2007
+ добавить свой РИД