×
29.03.2019
219.016.effe

Результат интеллектуальной деятельности: СИСТЕМА НАДДУВА ТОПЛИВНЫХ БАКОВ ГОРЮЧЕГО И ОКИСЛИТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002255241
Дата охранного документа
27.06.2005
Аннотация: Система наддува топливных баков горючего и окислителя двигательных установок космических летательных аппаратов содержит пневмомагистрали, связанные с системами наддува и газовыми полостями топливных баков горючего и окислителя, и установленные в каждой пневмомагистрали пускоотсечной клапан, газовый редуктор и предохранительный клапан. К предохранительным клапанам на выходе подключена дренажная магистраль, снабженная безмоментным соплом в виде пустотелого диска, стенки которого образуют круговой раструб. В центре пустотелого диска размещена цилиндрическая камера. В стенке цилиндрической камеры, соединяющей сходящиеся стенки кругового раструба, диаметрально противоположно выполнены сквозные отверстия равных размеров и одинаковых конфигураций. Изобретение исключит дестабилизацию полета космического корабля при аварийном сбросе газа системы наддува. 2 ил.

Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации систем наддува топливных баков горючего и окислителя, используемых как в двигательных установках космических летательных аппаратов, так и в системах дозаправки топлива космических дозаправщиков, устанавливаемых на грузовых космических кораблях.

Известны системы наддува топливных баков горючего и окислителя (см. журнал “Авиация и космонавтика”, М., Воениздат, 1978 г., № 7, с.36, 37, рис. 2), содержащая пневмомагистрали, связанные с баллонами наддува и газовыми полостями топливных баков горючего и окислителя, и установленные на каждой пневмомагистрали пускоотсечной клапан и газовый редуктор. В этой системе наддува сжатый до высокого давления газ (азот) из баллонов наддува при открытии пускоотсечных клапанов поступает в газовые редукторы, настроенные на заданный расход и на выходное расчетное давление, необходимое для выдавливания топлива из топливных баков и подачи топлива к потребителю. Т.к. прочность топливных баков рассчитана исходя из рабочего давления, равного выходному давлению после редуктора, то, в случае выхода из строя (отказа) редуктора, газ под высоким давлением попадает в газовую полость топливного бака, что без сброса газа из пневмомагистрали неизбежно приведет к разрушению бака.

Недостатком известной системы наддува является низкая надежность из-за отсутствия возможности исключить попадание газа высокого давления в газовую полость топливного бака в случае отказа газового редуктора.

Известна также система наддува топливных баков горючего и окислителя, которая принята за прототип (см. патент РФ № 2143579, МПК: F 02 K 9/50, с приоритетом от 31.08.1998), содержащая пневмомагистрали, связанные с баллонами наддува и газовыми полостями топливных баков горючего и окислителя и установленные на каждой пневмомагистрали пускоотсечной клапан, газовый редуктор и предохранительный клапан. Для выдавливания и подачи топлива из баков к потребителю открывают пускоотсечные клапаны и газ (азот) из баллонов наддува поступает к газовым редукторам, настроенным на выходные давления (рабочие давления), необходимые для выдавливания топлива из топливных баков и подачи к потребителю. В случае отказа газового редуктора, установленного на пневмомагистрали, давление за газовым редуктором и в соответствующей газовой полости топливного бака начинает расти и при давлении срабатывания предохранительного клапана происходит сброс через него в окружающее пространство (в открытый космос), что обеспечивает целостность и работоспособность топливного бака. Однако при сбросе газа возникает реактивная сила, создающая воздействие на космический корабль, что нарушает его стабилизацию и режим полета в невесомости (в космическом пространстве).

Недостатком указанной системы наддува топливных баков горючего и окислителя является наличие дестабилизирующего фактора при аварийном сбросе газа системой в невесомости.

Задачей настоящего изобретения является создание системы наддува топливных баков горючего и окислителя, которая исключила бы факторы, дестабилизирующие полет космического корабля при аварийном сбросе газа системы наддува путем устранения реактивной силы, возникающей от струи газа.

Технический результат достигается тем, что в системе наддува топливных баков горючего и окислителя, содержащей пневмомагистрали, связанные с системами наддува и газовыми полостями топливных баков горючего и окислителя, и установленные в каждой пневмомагистрали пускоотсечной клапан, газовый редуктор и предохранительный клапан, в отличие от известной к предохранительным клапанам на выходе подключена дренажная магистраль, снабженная безмоментным соплом в виде пустотелого диска, стенки которого образуют круговой раструб, при этом в центре пустотелого диска размещена цилиндрическая камера, в стенке которой, соединяющей сходящиеся стенки кругового раструба, диаметрально противоположно выполнены сквозные отверстия равных размеров и одинаковых конфигураций.

Технический результат заключается в том, что по сравнению с известными техническими решениями вновь созданная система наддува топливных баков горючего и окислителя исключает возникновение реактивной силы при аварийном сбросе газа за счет подключения к предохранительным клапанам дренажной магистрали, снабженной безмоментным соплом, обеспечивающим равносторонний выброс газа, уравновешивающий и взаимоисключающий реактивные силы струй газа, выбрасываемых в окружающее пространство (в космос) через диаметрально расположенные сквозные отверстия равных размеров и конфигураций, выполненные в стенках цилиндрической камеры безмоментного сопла.

Использование предлагаемой системы наддува топливных баков горючего и окислителя, например, на космическом корабле типа “Прогресс” позволит дать значительный экономический эффект за счет исключения дестабилизации полета корабля, что подтверждено испытаниями опытных образцов, изготовленных с использованием предлагаемого технического решения.

Суть изобретения поясняется чертежами, где на фиг.1 приведена схема системы наддува топливных баков горючего и окислителя, а на фиг.2 изображено устройство безмоментного сопла.

Система наддува топливных баков горючего и окислителя состоит из следующих основных узлов и деталей: пневмомагистралей 1, 2, связанных с баллонами наддува 3, 4 и газовыми полостями 5, 6 топливных баков 7 горючего и 8 окислителя и установленных на каждой пневмомагистрали 1, 2 пускоотсечного клапана 9, 10, газового редуктора 11, 12 и предохранительного клапана 13, 14.

К предохранительным клапанам 13, 14 на выходе подключена дренажная магистраль 15, снабженная безмоментным соплом 16, выполненным в виде пустотелого диска с расположенной в центре цилиндрической камерой 17, со сквозными отверстиями 18 равных размеров и одинаковых конфигураций, выполненными диаметрально противоположно в боковой стенке 19 цилиндрической камеры 17, соединяющей сходящиеся стенки кругового раструба 20, образованного снаружи цилиндрической камеры.

Работает система наддува топливных баков горючего и окислителя следующим образом.

При выдавливании и подаче топлива из топливных баков горючего и окислителя 7, 8, например, в соответствующие топливные баки двигательной установки космического летательного аппарата или космической станции типа “Мир”, открывают пускоотсечные клапаны 9, 10 и газ, например азот, из баллонов наддува 3, 4 (баллоны наддува перед стартом заполняют азотом до давления 350 кгс/см2) поступает в газовые редукторы 11, 12, настроенные на выходные давления (рабочие давления), например 20 кгс/см2. Эти давления необходимы для выдавливания топлива из топливных баков 7,8 и подачи его к потребителю. В случае отказа, например, газового редуктора 11, установленного на пневмомагистрали 1, давление за редуктором 11 и газовой полости 5 топливного бака 7 начнет расти. При давлении, например, 28 кгс/см2, начнет срабатывать предохранительный клапан 13. При давлении 30 кгс/см2 предохранительный клапан 13 полностью откроется, при этом расход газа через него станет достаточным для поддержания давления не более 30 кгс/см2, на которое рассчитана прочность топливных баков. При срабатывании предохранительного клапана 13, 14 сбрасываемый газ из пневмомагистрали 1, 2 попадает в дренажную магистраль 15 далее в цилиндрическую камеру 17, откуда через диаметрально расположенные сквозные отверстия 18 сбрасывается в окружающую среду (в космос). Выполнение сквозных отверстий 18 равных диаметров и одинаковых (идентичных) конфигураций и диаметральное их расположение в боковой стенке 19 цилиндрической камеры 17 позволяют обеспечить разгрузку и взаимное уравновешивание реактивных сил, возникающих при выбросе газа из сквозных отверстий 18, а круговой раструб 20, образованный снаружи цилиндрической камеры 17, обеспечивает круговое распыление газа, повышающее качество выброса, смягчающее (исключающее) воздействие сбрасываемого газа из сопла 16 на полет корабля.

Таким образом, подключение к предохранительным клапанам 13, 14 дренажной магистрали 15, снабженной безмоментным соплом 16, выполненным согласно предлагаемому техническому решению, обеспечивает стабильный полет космического корабля (исключает дестабилизацию) путем устранения реактивной силы, возникающей при аварийном сбросе газа системы наддува, что позволяет выполнить поставленную задачу.

Системанаддуватопливныхбаковгорючегоиокислителя,содержащаяпневмомагистрали,связанныессистемаминаддуваигазовымиполостямитопливныхбаковгорючегоиокислителя,иустановленныевкаждойпневмомагистралипускоотсечнойклапан,газовыйредукторипредохранительныйклапан,отличающаясятем,чтокпредохранительнымклапанамнавыходеподключенадренажнаямагистраль,снабженнаябезмоментнымсопломввидепустотелогодиска,стенкикоторогообразуюткруговойраструб,приэтомвцентрепустотелогодискаразмещенацилиндрическаякамера,встенкекоторой,соединяющейсходящиесястенкикруговогораструба,диаметральнопротивоположновыполненысквозныеотверстияравныхразмеровиодинаковыхконфигураций.
Источник поступления информации: Роспатент

Showing 21-30 of 71 items.
10.04.2019
№219.016.ff65

Способ определения параметров двухполюсника

Способ может быть использован для измерения параметров выпускаемых электрорадиоизделий (резисторов, конденсаторов, индуктивностей), а также датчиков параметров физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах....
Тип: Изобретение
Номер охранного документа: 0002260809
Дата охранного документа: 20.09.2005
10.04.2019
№219.016.ff79

Устройство для определения параметров двухполюсника

Устройство может быть использовано для измерения параметров выпускаемых электрорадиоизделий (резисторов, конденсаторов, индуктивностей), а также датчиков параметров физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных...
Тип: Изобретение
Номер охранного документа: 0002262115
Дата охранного документа: 10.10.2005
10.04.2019
№219.016.ff82

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в...
Тип: Изобретение
Номер охранного документа: 0002262669
Дата охранного документа: 20.10.2005
10.04.2019
№219.017.0019

Система хранения и подачи газообразного кислорода

Система хранения и подачи газообразного кислорода размещена на грузовом космическом корабле и содержит баллон высокого давления и магистраль подачи с установленным в ней пусковым клапаном, газовым редуктором, фильтрами-токоразрядниками и регулирующим вентилем. Фильтры-токоразрядники установлены...
Тип: Изобретение
Номер охранного документа: 0002248459
Дата охранного документа: 20.03.2005
10.04.2019
№219.017.0056

Устройство для транспортирования кабеля

Изобретение относится к области электротехники. Техническим результатом является улучшение энергомичности, уменьшение габаритов и обеспечение возможности проверки целостности проводников. В устройстве для транспортирования кабеля, содержащем катушку в форме цилиндра с двумя торцевыми дисками, с...
Тип: Изобретение
Номер охранного документа: 0002296405
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.006b

Способ определения теплофизических характеристик пенополиуретанов

Изобретение относится к теплофизическим измерениям. Способ состоит в том, что на теплоизолируемую поверхность исследуемого образца воздействуют по линии тепловыми импульсами постоянной мощности и периодом следования. Выбирают ряд образцов пенополиуретана с заранее определенными и различными...
Тип: Изобретение
Номер охранного документа: 0002295720
Дата охранного документа: 20.03.2007
10.04.2019
№219.017.00b6

Бортовой комплекс грузового космического корабля

Бортовой комплекс грузового космического корабля (БК ГКК) относится к космической технике, а точнее к области проектирования и эксплуатации транспортных космических кораблей. БК ГКК включает топливный отсек, соединенный с герметичным грузовым отсеком, снабженным стыковочным узлом, и размещенные...
Тип: Изобретение
Номер охранного документа: 02207308
Дата охранного документа: 27.06.2003
10.04.2019
№219.017.00d2

Прецизионный частотно-импульсный измеритель

Использование: в системах, построенных на базе прецизионных частотно-импульсных измерителей. Технический результат заключается в повышении точности измерения за счет формирования уравновешивающего сигнала, точного по амплитуде и по длительности, кратной периоду кварцевого генератора....
Тип: Изобретение
Номер охранного документа: 02208797
Дата охранного документа: 20.07.2003
10.04.2019
№219.017.0160

Способ управления давлением в гидравлической системе терморегулирования пилотируемого космического объекта

Изобретение относится к космической технике и может быть использовано, в частности, в системах терморегулирования (СТР) долговременных модулей орбитальных станций, в ходе проведения экипажем во время полета ремонтно-профилактических работ. Предлагаемый способ включает периодическое уравнивание...
Тип: Изобретение
Номер охранного документа: 02238887
Дата охранного документа: 27.10.2004
10.04.2019
№219.017.0a33

Способ запуска криогенного центробежного насоса с разгрузочной полостью, сообщающейся со входом в насос, и криогенный центробежный насос

Изобретение относится к насосостроению, в частности к центробежным насосам системы подачи криогенных компонентов топлива жидкостных ракетных двигательных установок (ЖРДУ). Способ запуска криогенного центробежного насоса с разгрузочной полостью, сообщающейся со входом в насос, заключается в...
Тип: Изобретение
Номер охранного документа: 02171917
Дата охранного документа: 10.08.2001
Showing 11-11 of 11 items.
09.06.2019
№219.017.775b

Устройство для испытаний на герметичность системы наддува топливных баков горючего и окислителя космического летательного аппарата

Изобретение относится к космической технике, а конкретнее к области проектирования и эксплуатации систем наддува топливных баков горючего и окислителя, используемых в двигательных установках космических летательных аппаратов (КЛА) и в системах дозаправки топлива, размещенных на грузовых...
Тип: Изобретение
Номер охранного документа: 02240523
Дата охранного документа: 20.11.2004
+ добавить свой РИД