×
29.03.2019
219.016.eded

Результат интеллектуальной деятельности: Способ плазменного нанесения наноструктурированного теплозащитного покрытия

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу плазменного нанесения наноструктурированного теплозащитного покрытия. Предварительно на срезе сверхзвукового сопла плазмотрона устанавливают конический насадок, внутренняя поверхность которого образует с внутренней поверхностью сопла излом, что позволяет после излома установить давление плазмы с напыляемым веществом в пристеночной части насадка равным давлению в вакуумной камере. Плазмотрон и подложку устанавливают в камеру с пониженным давлением. Осуществляют поддержание динамического вакуума в камере, подачу плазмообразующего газа и порошка напыляемого вещества в плазмотрон и распыление вещества сверхзвуковым потоком плазмы с образованием расплавленных частиц микронного уровня и паровой фазы напыляемого вещества. Затем обеспечивают выпадение на подложку наночастиц, образующихся в пристеночной части насадка, и частиц микронного уровня напыляемого вещества. Подложку перемещают таким образом, чтобы слои из наночастиц и частиц микронного уровня напыляемого вещества перекрывали друг друга. Технический результат заключается в одновременном повышении адгезионной и когезионной прочности покрытия и увеличении его теплостойкости. 5 ил

Изобретение относится к способам нанесения покрытий и может быть использовано в плазмохимии, в плазмометаллургии, также может найти использование в машиностроительной промышленности для защиты теплонапряженных узлов и элементов конструкции.

Известен способ нанесения теплозащитных покрытий (ТЗП) для защиты теплонапряженных узлов и элементов конструкции двигательных установок от теплового и эрозионного разрушения в струе сгорания топлив, содержащих конденсированную фазу продуктов сгорания смесевого твердого топлива (1).

В изобретении по патенту (2) предлагается напылять в камеру сгорания жидкостных ракетных двигателей (КС ЖРД) подслой нихрома и слой керметной композиции, содержащей смесь диоксида гафния и плакированного никелем вольфрама, затем дополнительно напыляют слой диоксида гафния, стабилизированного оксидом иттрия.

Недостатком способа является наличие WNi в одном из слоев ТЗП, что при рабочих температурах и составе газовой среды в КС ЖРД может приводить к плавлению WNi и интенсивному окислению, и растрескиванию слоя.

Патентом (3) защищен способ получения ТЗП, который может найти применение в ракетной технике при изготовлении КС ЖРД на основе композиции ZrO2+NiCr. Способ заключается в плазменном напылении в атмосфере сначала подслоя нихрома, а затем напыления керметной композиции из механической порошковой смеси, содержащей диоксид циркония и нихром. Подачу порошковой смеси осуществляют под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности. В качестве стабилизирующей добавки в порошке диоксида циркония используют оксид кальция.

Недостатком способа является то, что наличие нихрома в теплозащитном слое ТЗП заметно увеличивает коэффициент теплопроводности λ, по сравнению с ТЗП, состоящим из одного ZrO2, и снижает жаростойкость, что не позволяет защищать стенку КС ЖРД от повышенных тепловых потоков.

В настоящее время при создании перспективных ЖРД с повышенными рабочими характеристиками (давление и температура) в КС рассматриваются возможности более эффективной защиты огневых стенок КС от повышенных относительно существующих тепловых потоков, идущих от высокотемпературных продуктов сгорания в огневые стенки КС.

Прототипом к предлагаемому изобретению является способ нанесения покрытий из наночастиц (4), в котором в условиях динамического вакуума плазма с напыляемым порошком обтекает стенку в форме угла, отклоненного от оси плазмотрона, а в угловой точке образуется веер волн разрежения с конденсацией наночастиц из паровой фазы напыляемого материала в плазмообразующем газе и выпадением их на подложку с образованием покрытия, состоящего из наночастиц.

К недостаткам данного способа можно отнести то, что расплавленные частицы напыляемого вещества микронного уровня из-за большой массы не участвуют в создании покрытия, а пролетают мимо подложки, не испытывая поворота к ней в веере волн разрежения.

Технический результат, достигаемый заявленным способом состоит в одновременном повышении адгезионной и когезионной прочности покрытия, увеличении его теплостойкости, при использовании всего напыляемого материала, выпадающего на подложку в виде частиц микронного уровня и в виде наночастиц.

Для обеспечения технического результата предложен следующий способ нанесения покрытия.

В способе плазменного нанесения наноструктурированного теплозащитного покрытия на подложку, включающем установку плазмотрона со сверхзвуковым соплом и подложки в камеру пониженного давления, поддерживание в камере динамического вакуума, подачу плазмообразующего газа и порошка напыляемого вещества в сверхзвуковое сопло плазмотрона и распыление вещества сверхзвуковым потоком плазмы в камере с образованием расплавленных частиц микронного уровня и паровой фазы напыляемого вещества, на срезе сверхзвукового сопла плазмотрона устанавливают конический насадок, внутренняя поверхность которого образует с внутренней поверхностью сопла излом, угол которого выбирают из условия обеспечения в пристеночной части насадка после разворота плазмы на упомянутый угол давления, равного давлению в камере пониженного давления, и обеспечения образования наночастиц в пристеночном слое насадка из паровой фазы напыляемого вещества и частиц микронного уровня из напыляемого вещества, при этом в процессе распыления подложку перемещают относительно сопла с обеспечением перекрытия друг другом слоев из наночастиц и частиц микронного уровня.

Наночастицы выпадают на подложку напротив насадка в виде наноструктурированного слоя. Расплавленные частицы напыляемого вещества микронного уровня образуют на подложке напротив сопла плазмотрона классическое газотермическое покрытие.

В отличие от прототипа, в котором напыление покрытия происходит только за счет наночастиц, в предлагаемом способе используется весь напыляемый материал. В силу повышенной активности поверхностных атомов наночастиц они способствуют увеличению когезии между слоями из микронных частиц, но способны выдержать рабочие температуры, совпадающие с рабочими температурами слоев из микронных частиц, так как они образуются из того же напыляемого вещества.

Сущность изобретения поясняется чертежами.

На фигуре 1 изображен плазмотрон с установленным насадком.

На фигуре 2 приведена схема нанесения покрытия.

На фигуре 3 приведена схема установки конического насадка на сверхзвуковое сопло плазмотрона.

На фигуре 4 показано изменение газодинамических параметров течения плазмы в точке А.

На фигуре 5 приведено увеличенное изображение с растрового электронного микроскопа поверхностного слоя ТЗП (слоя оксида гафния).

На фигуре 1 показан плазмотрон для нанесения покрытий. На сверхзвуковое сопло В в выходной его части устанавливают насадок С, внутренняя коническая поверхность которого образует с поверхностью сопла излом - точка А. В точке излома А реализуется веер волн разрежения Прандтля-Майера, в которых паровая фаза напыляемого вещества конденсируется с образованием наночастиц, наличие которых в покрытии значительно увеличивает его адгезию и когезию, а также теплостойкость. Обратим внимание на то, что течение с разрежением в сопле плазмотрона образуется только при истечении струи плазмы в динамический вакуум, а не в атмосферу.

Схема нанесения покрытия при помощи такого сопла приведена на фигуре 2. На схеме показано, что в средней части под соплом на подложку наносится традиционное газотермическое покрытие 1 частицами микронного уровня, которые проходят основное сопло плазмотрона и в силу относительно больших размеров не разворачиваются в насадке в веере волн разрежения, а пролетают дальше к подложке. На периферии покрытия наносится слой из наночастиц 2, образовавшихся из паровой фазы в пристеночной части насадка. Перемещая плоскую подложку, как это указано стрелками (поочередно то в одну, то в другую сторону), получаем покрытие, в котором слои из наночастиц и слои из частиц микронного уровня перекрывают друг друга. В случае цилиндрической подложки производится вращение подложки в одну сторону для достижения того же эффекта.

На фигуре 3 приведена схема установки конического насадка на сверхзвуковое сопло плазмотрона.

Рассмотрим изменение газодинамических параметров течения плазмы в точке А, которая после излома обозначена как А'. На фигуре 4 введены следующие обозначения: MA - число Маха до точки А; MA' - число Маха после угловой точки А'.

В качестве примера возьмем сопло, используемое в плазмотроне для напыления и имеющее следующие параметры:

- диаметр критического сечения dкр=4 мм;

- диаметр выходного сечения dc=11 мм;

- число Маха в выходном сечении MA=3,32;

- давление в плазмотроне Р0=0,15 МПа;

- температура в плазмотроне Т0=4200 К;

- давление в вакуумной камере Pk=1,5⋅102 Па.

В точке А за счет насадка имеется излом проточной части сопла, и параметры течения в точке А', которая расположена сразу за точкой А после излома образующей, определяются по закономерностям течения Прандтля-Майера. Угол Прандтля-Майера (ν) определяет связь числа Маха (М) рассматриваемого течения с углом разворота в веере волн разрежения от числа М=1 до числа М по следующему выражению:

Выберем угол излома образующей насадка исходя из условия равенства давления в камере пониженного давления Pk статическому давлению в течении после прохождения разворота в веере волн разрежения и примем, что оно совпадает со статическим давлением на срезе сопла с насадком РА', иначе говоря

РА'0π(MA')=1,5⋅102 Па,

где π(MA') - газодинамическая функция, равная отношению статического давления РА' к полному давлению Р0. Из этого выражения π(MA')=0,001, что для азота соответствует числу MA'=5,56.

Определим угол Θ, на который должен развернуться поток плазмы в точке А (см. фиг. 4) от МА=3,32 до MA'=5,56, для того чтобы сравнялись статическое давление в плазме после разворота с давлением Pk. Из газодинамических таблиц течения Прандтля-Майера следует, что Следовательно, угол

Из этих же таблиц следует, что при переходе через веер волн разрежения от точки А до точки А' статическая температура падает с 1310 К до 584,6 К, а статическое давление упадет с 25,5⋅102 Па до 1,5⋅102 Па.

Отметим, что быстрое охлаждение и падение статического давления, которое имеет место в точке А, приведет к резкой конденсации паров напыляемого вещества с образованием наночастиц.

Теперь определим диаметр выходного сечения сопла с насадком, исходя из второго предположения о том, что давление Pk совпадает со статическим давлением в выходном сечении сопла с насадком.

Для этого определим отношение площади выходного сечения сопла «а» с насадком (диаметр da, см. фиг. 3) к площади критического сечения сопла (диаметр dкр) плазмотрона при Ма=5,56, где Ма - число Маха в выходном сечении сопла с насадком, совпадающее с числом MA'. Из газодинамических таблиц это отношение равно для азота 38,57. Отсюда следует, что da=24,8 мм.

Рассмотрим пример осуществления предложенного способа напыления. Подготовленные образцы подложек для нанесения ТЗП помещают в камеру с пониженным давлением.

Затем в динамическом вакууме при помощи плазмотрона с предложенным насадком напыляют сначала подслой никеля, затем слой диоксида циркония, стабилизированного 7%Y2O3 и верхний слой - оксид гафния, стабилизированного 7%Y2O3.

Режимы напыления:

- плазмообразующий газ - азот.

- ток дуги I, А - 100±20.

- напряжение на дуге U, В - 90±10.

- расход плазмообразующего (он же транспортирующий) газа - 60 л/мин.

Толщина подслоя никеля составляет 25-30 мкм; толщина слоя (ZrO2+7%Y2O3) - 65-70 мкм; толщина слоя (HfO2+7%Y2O3) - 10-15 мкм.

Увеличенное изображение с растрового электронного микроскопа поверхностного слоя ТЗП (слоя оксида гафния), приведено на фигуре 5. Из этой фигуры видно, что на поверхности ТЗП преобладают наночастицы оксида гафния.

Огневые испытания образцов проводились на установке для испытаний , при этом во время испытаний образец, помещенный в установку, охлаждался водой, тепловой поток создавался струей плазмы, истекающей из плазмотрона с указанными выше параметрами. Каждое испытание длилось 30 секунд.

Образцы с покрытием, полученные без применения насадка, выдерживали до появления трещин 7-9 испытаний. Образцы покрытия, полученные с использованием насадка, выдерживали 25 испытаний без растрескивания.

В предлагаемом способе наночастицы образуются непосредственно перед напылением покрытия и не имеют традиционных недостатков при работе с ними: не слипаются друг с другом (агрегация) и не проявляют химическую активность с окружающей их средой. Также образование наночастиц для напыления происходит экологически безопасным способом из порошков микронного уровня, т.к. весь процесс от формирования наночастиц до нанесения покрытий, происходит в замкнутом пространстве камеры.

Источники

1. ОСТ 92-1406-68 «Покрытия эрозионно-стойкие неметаллические».

2. В.В. Сайгин, А.В. Сафронов и др. Способ получения эрозионностойких теплозащитных покрытий. Патент РФ №2499078, 2012.

3. В.В. Сайгин, В.П. Воеводин и др. Способ получения эрозионно стойких теплозащитных покрытий. Патент РФ №2283363, 2003.

4. Т.А. Евдокимова, М.Н. Полянский и др. Способ нанесения покрытия. Патент РФ №2436862, 2010.

Способ плазменного нанесения наноструктурированного теплозащитного покрытия на подложку, включающий установку плазмотрона со сверхзвуковым соплом и подложки в камеру пониженного давления, поддерживание в камере динамического вакуума, подачу плазмообразующего газа и порошка напыляемого вещества в сверхзвуковое сопло плазмотрона и распыление вещества сверхзвуковым потоком плазмы в камере с образованием расплавленных частиц микронного уровня и паровой фазы напыляемого вещества, отличающийся тем, что на срезе сверхзвукового сопла плазмотрона устанавливают конический насадок, внутренняя поверхность которого образует с внутренней поверхностью сопла излом, угол которого выбирают из условия обеспечения в пристеночной части насадка после разворота плазмы на упомянутый угол давления, равного давлению в камере пониженного давления, и обеспечения образования наночастиц в пристеночном слое насадка из паровой фазы напыляемого вещества и частиц микронного уровня из напыляемого вещества, при этом в процессе распыления подложку перемещают относительно сопла с обеспечением перекрытия друг другом слоев из наночастиц и частиц микронного уровня.
Способ плазменного нанесения наноструктурированного теплозащитного покрытия
Способ плазменного нанесения наноструктурированного теплозащитного покрытия
Способ плазменного нанесения наноструктурированного теплозащитного покрытия
Способ плазменного нанесения наноструктурированного теплозащитного покрытия
Источник поступления информации: Роспатент

Showing 1-10 of 120 items.
25.08.2017
№217.015.bb66

Ракетно-прямоточный двигатель с регулируемым расходом твёрдого топлива

Изобретение относится к ракетной технике и может быть использовано в гиперзвуковых (М≥5) крылатых ракетах с ракетно-прямоточными двигателями, предназначенных для полетов на больших высотах. Ракетно-прямоточный двигатель содержит воздухозаборник, газогенератор с зарядом твердого топлива,...
Тип: Изобретение
Номер охранного документа: 0002615889
Дата охранного документа: 11.04.2017
29.12.2017
№217.015.f0f4

Кантователь (варианты)

Изобретение относится к конструкциям, предназначенным для кантования (поворота) изделий различного назначения, предпочтительнее космических аппаратов. Кантователь содержит основание, две стойки, к которым на оси кантования закреплена грузовая платформа, которая снабжена поворотной планшайбой, и...
Тип: Изобретение
Номер охранного документа: 0002638997
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f62d

Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника земли

Использование: в области электротехники. Технический результат – более точное определение времени начала балансировки аккумуляторов. Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника Земли заключается в контроле...
Тип: Изобретение
Номер охранного документа: 0002637815
Дата охранного документа: 07.12.2017
20.01.2018
№218.016.1384

Способ управления автономной системой электроснабжения космического аппарата

Использование: в области электротехники в системах электроснабжения (СЭС) космических аппаратов (КА). Технический результат - обеспечение штатного отключения сеансной нагрузки при нештатной ситуации. Способ управления автономной системой электроснабжения, которая содержит солнечную батарею и...
Тип: Изобретение
Номер охранного документа: 0002634473
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1773

Фильтр

Изобретение предназначено для фильтрования. Фильтр содержит корпус, помещенную внутрь корпуса несущую трубу и рабочие модули, закрепленные поперек несущей трубы. Каждый из рабочих модулей содержит расположенные на удалении друг от друга первый и второй фильтровальные пакеты, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002635802
Дата охранного документа: 16.11.2017
17.02.2018
№218.016.2b00

Способ получения термически стабильного носителя для катализатора сжигания монотоплива

Изобретение относится к области химии и может быть использовано для получения носителей для катализаторов, обладающих высокой площадью поверхности и термостабильностью в условиях сверхвысоких температур, например, в процессах сжигания монотоплива, в том числе "зеленого топлива" на основе...
Тип: Изобретение
Номер охранного документа: 0002642966
Дата охранного документа: 30.01.2018
04.04.2018
№218.016.3663

Способ ориентации космического аппарата в солнечно-земной системе координат

Изобретение относится к управлению ориентацией космических аппаратов (КА), осуществляемой в солнечно-земной системе координат. Способ включает ориентацию первой оси КА на Землю путем разворотов вокруг второй и третьей осей КА с помощью электромеханических исполнительных органов. При отсутствии...
Тип: Изобретение
Номер охранного документа: 0002646392
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.4058

Способ разгрузки управляющих двигателей-маховиков космического аппарата

Изобретение относится к управлению относительным движением космического аппарата (КА). Разгрузка управляющих двигателей-маховиков (ДМ) в выбранном канале ориентации осуществляется по двухконтурной схеме. Первый контур реализует необходимую ориентацию КА и накапливает импульс внешнего...
Тип: Изобретение
Номер охранного документа: 0002648906
Дата охранного документа: 28.03.2018
29.05.2018
№218.016.5430

Сплав на основе алюминия для противометеоритной защиты

Изобретение относится к деформируемым сплавам на основе алюминия и может быть использовано для защиты космических аппаратов от микрометеоритов и техногенных тел. Сплав на основе алюминия содержит, мас. %: цинк 5,8-11; магний 1,5-3,5; медь 0,1-3; марганец 0,1-0,5; по меньшей мере один элемент...
Тип: Изобретение
Номер охранного документа: 0002654224
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5a5a

Рефлектор

Изобретение относится к производству изделий из композиционных материалов, а именно конструкциям и способам изготовления прецизионных рефлекторов антенн с отражающей поверхностью, образованной не только кривой второго порядка, но и специальным сложным профилем. Задачами настоящего изобретения...
Тип: Изобретение
Номер охранного документа: 0002655473
Дата охранного документа: 28.05.2018
Showing 1-10 of 37 items.
27.05.2013
№216.012.449b

Способ нанесения теплозащитного наноструктурированного покрытия плазменным распылением порошка

Изобретение относится к области нанотехнологий, используемых для нанесения покрытий, и может найти применение в ракетостроении, авиационной и машиностроительной промышленности. Осуществляют поддержание динамического вакуума в камере для нанесения покрытия и проводят поочередное напыление слоя...
Тип: Изобретение
Номер охранного документа: 0002483140
Дата охранного документа: 27.05.2013
10.04.2014
№216.012.b403

Способ создания аэродинамического сопла многокамерной двигательной установки и составной сопловой блок для осуществления способа

При создании сопла двигательной установки создают внешний поток газов из первичных сопел многокамерной двигательной установки с центральным телом на первой ступени ракеты-носителя и внутренний поток газов из первичных сопел жидкостных ракетных двигателей, выполненных по закрытой схеме с...
Тип: Изобретение
Номер охранного документа: 0002511800
Дата охранного документа: 10.04.2014
10.06.2014
№216.012.cbe8

Бессопловой ракетный двигатель твердого топлива

Изобретение относится к ракетной технике и может быть использовано при создании стартово-разгонных ступеней для ракет с прямоточными воздушно-реактивными двигателями и во вспомогательных ракетных двигателях твердого топлива. Бессопловой ракетный двигатель твердого топлива включает камеру...
Тип: Изобретение
Номер охранного документа: 0002517971
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d6d1

Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа

Изобретение относится к жидкостным ракетным двигателям (ЖРД), в частности к многокамерным ракетным двигателям. Жидкостный ракетный двигатель, включающий камеры (не менее двух) с трактами регенеративного охлаждения и смесительные головки; турбонасосную систему питания (ТНА) газогенераторов и...
Тип: Изобретение
Номер охранного документа: 0002520771
Дата охранного документа: 27.06.2014
10.09.2014
№216.012.f290

Способ повышения энергетических характеристик жидкостных ракетных двигателей

Изобретение относится к ракетной технике, а конкретно к кислородно-керосиновым жидкостным ракетным двигателям (ЖРД) замкнутой или открытой схем. Способ повышения энергетических характеристик жидкостного ракетного двигателя, работающего на компонентах топлива жидкий кислород и углеводородное...
Тип: Изобретение
Номер охранного документа: 0002527918
Дата охранного документа: 10.09.2014
10.11.2014
№216.013.0417

Компоновка многоступенчатой ракеты-носителя

Изобретение относится к космической технике и может быть использовано в ракетах-носителях. Многоступенчатая ракета-носитель содержит головной блок с полезным грузом, параллельно расположенные разделяемые ракетные блоки ступеней с многокамерными двигательными установками с топливными баками (ТБ)...
Тип: Изобретение
Номер охранного документа: 0002532445
Дата охранного документа: 10.11.2014
20.02.2015
№216.013.2b9e

Способ работы кислородно-керосиновых жидкостных ракетных двигателей (жрд) и ракетная двигательная установка

Изобретение относится к ракетной технике, а конкретно к кислородно-керосиновым жидкостным ракетным двигателям (ЖРД) замкнутой или открытой схем. Способ работы кислородно-керосиновых ЖРД и ракетная двигательная установка, основанный на введении в чистый керосин полимерной противотурбулентной...
Тип: Изобретение
Номер охранного документа: 0002542623
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3c7e

Плазматрон для нанесения покрытий в динамическом вакууме

Изобретение относится к области плазменной обработки материалов, в частности для нанесения покрытий, и может найти применение в плазмометаллургии, плазмохимии и машиностроительной промышленности. Технический результат - повышение надежности работы плазматрона при нанесении покрытий из порошков...
Тип: Изобретение
Номер охранного документа: 0002546974
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3df9

Система подачи жидкого кислорода и способ его подачи из бака потребителю

Изобретение относится к области силовых установок летательных аппаратов. Система подачи жидкого кислорода, содержащая агрегат соединенных последовательно гидравлически друг с другом насосов трех каскадов с автономными приводами, бак с кислородом и потребитель кислорода, где вход системы...
Тип: Изобретение
Номер охранного документа: 0002547353
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5bb8

Камера жидкостного ракетного двигателя или газогенератора

Изобретение относится к области ракетостроения и, в частности, к камере жидкостного ракетного двигателя (ЖРД) или газогенератора с лазерным зажиганием компонентов топлива. Камера ЖРД или газогенератора содержит силовой корпус, смесительную головку с форсунками окислителя и горючего,...
Тип: Изобретение
Номер охранного документа: 0002555021
Дата охранного документа: 10.07.2015
+ добавить свой РИД