×
23.03.2019
219.016.ecba

КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ ПЕРЕРАБОТКИ ОСАДКОВ СТОЧНЫХ ВОД И СПОСОБ ИХ ПЕРЕРАБОТКИ (ВАРИАНТЫ)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может найти применение в химической, нефтехимической, целлюлозно-бумажной промышленности. В каталитический реактор загружают катализатор из бункера 13 с помощью эжектора 14 через загрузочный патрубок 7. Под газораспределительную решетку 8 через патрубок 3 подают воздух для псевдоожижения слоя. Слой катализатора нагревают до температуры 300-400°C. Затем через патрубок 4 в слой вводят уголь. Температуру слоя доводят до температуры 500-750°C за счет теплоты сгорания топлива. В слой через патрубок 15 подают влажный осадок. Твердые продукты термоокислительной переработки охлаждают, отделяют от дымовых газов и обрабатывают водным раствором неорганической кислоты. Изобретение позволяет повысить эффективность переработки осадков сточных вод в псевдоожиженном слое катализатора, уменьшить износ катализатора, снизить выбросы токсичных веществ с дымовыми газами, 3 н.п. ф-лы, 1 ил., 14 пр.
Реферат Свернуть Развернуть

Изобретение относится к способам переработки осадков сточных вод, содержащих органические вещества, перед их утилизацией или захоронением и может найти применение для переработки влажных осадков сточных вод в химической, нефтехимической, целлюлозно-бумажной промышленности, коммунального и сельского хозяйства.

Известен способ обработки влажных осадков коммунальных сточных вод сжиганием в циркулирующем псевдоожиженном слое инертного материала, описанный в заявке US 2008017086, C02F 1/28, F23C 10/00, 24.01.2008. Способ включает стадии: концентрирование осадка фильтрацией, приготовление смеси осадка с измельченным углем и CaO влажностью 30-40%, сжигание осадка в циркулирующем псевдоожиженном слое кварцевого песка и известняка при температуре 850-950°C с последующим использованием теплоты дымовых газов для получения горячей воды или пара, отделением золы в электрофильтре с последующем использованием золы для приготовления строительных материалов и сбросом отходящих газов в дымовую трубу. Возможно также по способу добавление измельченного порошкообразного угля и CaO в исходную сточную воду в качестве адсорбентов-коагулянтов с последующей фильтрацией образующегося осадка и его сжигания после добавления дополнительного количества угля и CaO.

Основными недостатками известного способа являются:

1. Высокий расход угля для концентрирования осадка и его автотермического сжигания в циркулирующем псевдоожиженном слое.

2. Большие габариты аппарата для сжигания осадка в циркулирующем псевдоожиженном слое из-за необходимости дожигания частиц осадка в надслоевом пространстве.

3. Высокие температуры процесса сжигания 850-950°C, не исключающие ошлаковывания слоя и стенок аппарата и образования термических оксидов азота.

4. Высокий расход CaO для связывания оксидов серы.

Известен способ ((КР №2000073216, A, F23G 5/00, 05.12.2000) обработки отходов при 500°C каталитическим сжиганием в псевдоожиженном слое катализатора, состоящего из оксида алюминия с нанесенным активным компонентом в виде платины и цинка в соотношении 5-95% весовых.

Недостатками способа являются: значительный износ катализатора в псевдоожиженном состоянии, что приводит к высокому расходу дефицитной и дорогостоящей платины; отравление платинового катализатора соединениями серы с последующим снижением его активности в отношении окисления органических соединений и CO; неоднородность псевдоожиженого слоя из-за присутствия пузырей приводит к проскоку части летучих в надслоевое пространство с последующим их догоранием по традиционному факельному механизму при температуре 800-900°C. Дополнительно, влажный осадок сточных вод подается на верхнюю границу псевдоожиженого слоя, т.е. после испарения воды при контакте со слоем в слое сгорают только крупные частицы, а основная масса мелких частиц осадка догорает в надслоевом пространстве при температуре 800-900°C.

Наиболее близок по технической сущности способ переработки осадков сточных целлюлозно-бумажного производства в псевдоожиженном слое катализатора, описанный в патенте LT 2662, D21C 11/00, 25.04.1994. Способ включает механическое обезвоживание осадка до содержания сухих веществ в концентрате 20-25 мас.%, термообработку концентрата в псевдоожиженном слое алюмомагний-хромового катализатора, организованного решетчатой насадкой, охлаждение карбонизированного продукта на выходе из псевдоожиженного слоя катализатора до 200-300°C, затем продукт отделяют от парогазовой смеси в циклоне и промывают водным раствором неорганической кислоты и далее суспензию используют для очистки исходной сточной воды.

Недостатками известного способа являются:

1. Высокий расход катализатора из-за его истирания с последующим загрязнением твердых продуктов переработки катализаторной пылью, содержащей соединения хрома;

2. Сложность пуска и эксплуатации реактора с одинаковым его сечением по высоте псевдоожиженого слоя, т.к. для обеспечения оптимальной скорости псевдоожижения необходимо уменьшать расход воздуха на псевдоожижение слоя после подачи влажного осадка или при изменении влажности осадка во время работы из-за увеличения объема дымовых газов за счет паров воды, образующихся при сушке осадка. Увеличение скорости псевдоожижения выше оптимальной приводит к увеличению концентрации токсичных соединений в дымовых газах.

Наиболее близким реактором является каталитический теплогенератор, описанный патенте РФ №2232942, F23D 14/18, F23C 10/00, 20.07.2004. Теплогенератор состоит из вертикального корпуса с патрубками подачи воздуха и топлива, между которыми внутри корпуса размещена воздухораспределительная решетка со слоем гранулированного катализатора окисления, в теплогенераторе размещен теплообменник с шахматно-ширмовым расположением теплообменных трубок, под которыми расположены неизотермическая и организующая насадки, в корпусе под неизотермической насадкой предусмотрен патрубок для выгрузки катализатора и/или несколько патрубков для выгрузки катализатора над неизотермической насадкой, в корпусе выше уровня псевдоожиженного слоя предусмотрен патрубок для загрузки катализатора.

Недостатками теплогенератора при осуществлении способа переработки осадков сточных вод являются высокие рабочие скорости псевдоожижения после ввода в слой влажного осадка и низкий избыток воздуха при переработке осадков α=1,0-1,1, приводящие к увеличению выбросов токсичных веществ с дымовыми газами.

Задача, решаемая настоящим изобретением, состоит в повышении эффективности переработки осадков сточных вод в псевдоожиженном слое катализатора, уменьшении износа катализатора, снижение выбросов токсичных веществ с дымовыми газами.

Задача решается конструкцией каталитического реактора переработки осадков сточных вод, который состоит из вертикального корпуса с патрубками выгрузки катализатора, подачи воздуха и топлива в нижней части, патрубками отвода дымовых газов и загрузки катализатора в верхней части, внутри корпуса между патрубками подачи воздуха и топлива размещена газораспределительная решетка, на которой расположен катализатор окисления, выше решетки последовательно размещены организующая насадка и теплообменные поверхности отличающейся тем, что корпус реактора имеет расширение в верхней части и снабжен патрубком подачи осадка сточных вод, расположенным на уровне соединения нижней и верхней расширенной части корпуса реактора

Задача решается также способом переработки осадков сточных вод (первый вариант), который включает механическое обезвоживание осадка, термообработку концентрата при температуре 500-600°C в организованном неподвижной насадкой псевдоожиженном слое катализатора, охлаждение твердых продуктов переработки, отделение твердых продуктов от дымовых газов, обработку продукта водным раствором неорганической кислоты и использование суспензии для очистки исходной сточной воды, термообработку осадка проводят в каталитическом реакторе, описанном выше, в псевдоожиженном слое гранул катализатора глубокого окисления веществ в смеси с гранулами инертного материала в соотношении 20-90% катализатора и 10-80% инертного материала.

По второму варианту способ переработки осадков сточных вод включает механическое обезвоживание осадка, термообработку концентрата в организованном неподвижной насадкой псевдоожиженном слое катализатора, охлаждение твердых продуктов переработки, отделение твердых продуктов от дымовых газов, термообработку проводят в каталитическом реакторе, описанном выше, в псевдоожиженном слое гранул катализатора глубокого окисления веществ в смеси с гранулами инертного материала в соотношении 20-90% катализатора и 10-80% инертного материала при температуре 700-750°C в избытке воздуха, выше или равном, α≥1,2, а охлажденные твердые продукты переработки отправляют на складирование или захоронение.

На Фиг. изображена схема каталитического реактора.

Реактор состоит из вертикального корпуса (1) с расширением в верхней части корпуса (2). Соотношение площадей сечения верхней и нижней части 1,6-1,7 и соответствует величине рабочей скорости псевдоожижения катализатора в нижней части корпуса и скорости начала псевдоожижения катализатора в верхней части корпуса. Корпус в нижней части снабжен патрубками подачи воздуха (3), подачи дополнительного топлива (4) и выгрузки катализатора (5). В верхней расширенной части корпус снабжен патрубками отвода дымовых газов (6) и загрузки катализатора (7). На границе нижней и верхней частей корпуса размещен патрубок подачи осадка (15). Корпус снабжен газораспределительной решеткой (8) между патрубком подачи воздуха и патрубками подачи топлива и выгрузки катализатора. Над газораспределительной решеткой внутри верхней и нижней частей корпуса размещены пакеты объемной организующей насадки (9) с живым сечением 50-90% с величиной отверстий 2-15 диаметров частиц катализатора и долей свободного объема в пакете насадок 85-95%. Насадка выполнена в виде неподвижного блока, элементы которого представляют собой решетки, насадки в виде колец «Рашига» и т.п. В верхней части корпуса размещены трубчатые теплообменные поверхности, а в корпусе размещены патрубки для ввода воды (11) и вывода воды (12) и

Каталитический реактор работает следующим образом. В реактор загружают катализатор, например, пневмотранспортом из бункера (13) с помощью эжектора (14) через загрузочный патрубок (7). Количество загружаемого катализатора должно соответствовать высоте псевдоожиженного слоя при рабочей скорости псевдоожижения в верхней части корпуса, так чтобы теплообменник (10) находился вне псевдоожиженного слоя над его верхней границей. Под газораспределительную решетку (8) через патрубок (6) подают воздух для псевдоожижения слоя. Количество подаваемого воздуха соответствует рабочей скорости псевдоожижения катализатора в нижней части корпуса и равно скорости начала псевдоожижения катализатора в верхней части корпуса. Слой катализатора нагревают до температуры 300-400°C, например, за счет нагретого воздуха, подаваемого на псевдоожижение слоя. Затем через патрубок (4) в слой вводят дополнительное топливо, например уголь. Температуру слоя доводят до температуры 500-750°C за счет теплоты сгорания топлива. Затем в слой через патрубок (15) подают влажный осадок, подачу дополнительного топлива через патрубок (4) уменьшают или прекращают в зависимости от величины рабочей температуры термообработки осадка. При полном прекращении подачи дополнительного топлива и дальнейшем повышении температуры слоя выше требуемой для термообработки осадка в слой из бункера (13) через патрубок (7) догружают катализатор, так чтобы теплообменные поверхности были частично или полностью погружены в слой. Количество догружаемого катализатора определяется необходимой температурой термообработки.

Задача решается также способом переработки осадков сточных вод путем подачи концентрированного осадка в каталитический реактор, термообработкой и окислением концентрата при избытке воздуха α≥1,2 и температуре 500-750°C в организованном малообъемной насадкой псевдоожиженном слое гранул катализатора глубокого окисления веществ, не содержащего благородных металлов, в смеси с гранулами инертного материала в соотношении 20-90 мас.% катализатора и 10-80 мас.% инертного материала.

Способ осуществляют следующим образом. Осадок сточных вод после промежуточного уплотнения с влажностью 98-99% подают на механическое обезвоживание (центрифуга, или барабанный вакуум-фильтр, или фильтрпресс). Предварительно для лучшего обезвоживания в осадок добавляют флокулянт. После обезвоживания осадок с влажностью 70-80% подают в нижнюю часть реактора с псевдоожиженным слоем смеси частиц катализатора и инертного материала в соотношении 20-90 мас.% катализатора и 10-80 мас.% инертного материала.

Псевдоожиженный слой создают воздухом, который подают под газораспределительную решетку. При прохождении псевдоожиженного слоя происходит удаление влаги из частиц осадка, прогрев частиц и их термоокислительная переработка при 500-750°C. Температуру слоя 500-750°C поддерживают за счет теплоты сгорания осадка. При недостатке теплоты при влажности осадка выше 76-78% в слой вводят дополнительное топливо. После слоя дымовые газы направляют на теплообменник дымовые газы-воздух, где происходит нагрев воздуха, подаваемого на псевдоожижение слоя. Далее дымовые газы охлаждают в теплообменнике - бойлере при нагреве воды или получении пара. После охлаждения твердые продукты тероокислительной переработки отделяют от дымовых газов в циклоне или электрофильтре и подвергают обработке водным раствором неорганической кислоты, или используют в строительстве, или захоронятся. Тонкую очистку от пыли и окончательное охлаждение дымовых газов проводят в мокром скруббере, орошаемым очищенной сточной водой. Подскрубберную воду смешивают с исходной сточной водой и снова направляют на очистку. При необходимости использования дополнительной физико-химической очистки сточных вод в подскрубберную воду добавляют суспензию обработанных неорганической кислотой продуктов термоокислительной переработки.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1 (прототип).

В реактор диаметром 80 мм загружают 2,5 л алюмомагнийхромового катализатора с диаметром гранул 2-3 мм. Под газораспределительную решетку подают воздух для псевдоожижения и окисления в количестве 10 м3/ч. Внешним электроподогревателем нагревают слой катализатора до 300-400°C. Затем шнековым дозатором подают в слой влажный осадок - шлам-лигнин целлюлозного завода - в количестве 10 кг/ч и влажностью 80%, а электроподогреватель отключают. В верхней части слоя расположен теплообменник змеевикового типа, охлаждаемый холодной водой. Температуру в слое регулируют количеством воды, подаваемой на охлаждение в теплообменник, и поддерживают на уровне 600°C. Псевдоожиженный слой организован проволочными решетками со стороной ячейки, равной 10 мм, и расстоянием между решетками 10 мм (4 решетки) и решетками со стороной ячейки 25 мм и расстоянием между решетками 25 мм (10 решеток). Температуру парогазовой смеси и твердых продуктов на выходе из слоя поддерживают 200°C за счет охлаждения на поверхности теплообменника в верхней части слоя. На выходе из реактора образующийся продукт термоокислительной переработки отделяют от парогазовой смеси в циклоне. Парогазовую смесь анализируют на содержание токсичных примесей. Твердый продукт после циклона обрабатывают 0,5 Н водным раствором серной кислоты в соотношении 10/1 на единицу массы твердого продукта. В качестве модельной сточной воды используют разбавленный черный щелок целлюлозного завода с цветностью 5000° платино-кобальтовой шкалы и химическим потреблением кислорода (ХПК) 320 мг O2/л с pH 10,5. Количество твердого продукта для очистки сточной воды выбирают 0,3 г на 1 л сточной воды. В 1 л сточной воды добавляют 3 мл суспензии, перемешивают и через 10 мин анализируют на цветность и ХПК. Удельная поверхность полученного твердого продукта 280 м2/г. Степень очистки воды по ХПК 89%, по цветности 96%. Содержание CO в отходящих газах 0,03%. Степень истирания катализатора составляет 0,2% в сутки. Количество соединений хрома (в пересчете на Cr2O3) в составе твердого продукта 8,3·10-2 мг/г.

Примеры 2-8 иллюстрирует первый вариант предлагаемого способа.

Пример 2.

Аналогичен примеру 1, только реактор состоит из корпуса диаметром 80 мм в нижней части и 100 мм в верхней части (соотношение площадей сечения верхней и нижней части 1,65). В реактор загружают смесь речного песка и алюмомагнийхромового катализатора в соотношении 20% катализатора и 80% песка. Шнековым дозатором, расположенным на границе нижней и верхней частей корпуса, подают в псевдоожиженный слой влажный осадок сточных вод - шлам-лигнин целлюлозного завода - в количестве 10 кг/ч. Температуру поддерживают на уровне 600°C за счет изменения площади, погруженных в слой теплообменных поверхностей, изменением количества загруженного в реактор катализатора. Удельная поверхность твердого продукта 310 м2/г. Степень очистки воды по ХПК 92%, по цветности 98%. Содержание CO в отходящих газах 0,01%. Степень истирания катализатора составляет 0,01% в сутки. Количество соединений хрома (в пересчете на Cr2O3) в составе твердого продукта 0,4·10-2 мг/г.

Пример 3.

Аналогичен примеру 2, только в реактор загружают смесь речного песка и алюмомагнийхромового катализатора в соотношении 30% катализатора и 70% песка. Степень очистки воды по ХПК 92%, по цветности 98%. Содержание CO в отходящих газах 0,01%. Степень истирания катализатора составляет 0,02% в сутки. Количество соединений хрома (в пересчете на Cr2O3) в составе твердого продукта 0,8·10-2 мг/г.

Пример 4.

Аналогичен примеру 2, только в реактор загружают смесь речного песка и алюмомагнийхромового катализатора в соотношении 90% катализатора и 10% песка. Степень очистки воды по ХПК 92%, по цветности 98%. Содержание CO в отходящих газах 0,01%. Степень истирания катализатора составляет 0,1% в сутки. Количество соединений хрома (в пересчете на Cr2O3) в составе твердого продукта 4,0·10-2 мг/г.

Пример 5.

Аналогичен примеру 2, только в реактор загружают смесь речного песка и алюмомедьмагнийхромового катализатора в соотношении 20% катализатора и 80% песка. Степень очистки воды по ХПК 92%, по цветности 98%. Содержание CO в отходящих газах 0,005%. Степень истирания катализатора составляет 0,01% в сутки. Количество соединений хрома (в пересчете на Cr2O3) в составе твердого продукта 0,4·10-2 мг/г.

Пример 6.

Аналогичен примеру 2, только в реактор загружают смесь речного песка и алюмомедьмагнийжелезного катализатора в соотношении 20% катализатора и 80% песка. Степень очистки воды по ХПК 92%, по цветности 98%. Содержание CO в отходящих газах 0,01%. Степень истирания катализатора составляет 0,01% в сутки. Соединения хрома в составе твердого продукта не обнаружены.

Пример 7.

Аналогичен примеру 1 и 2, только в реактор подают влажный осадок сточных вод коммунального хозяйства в количестве 10 кг/ч. Осадок обезвожен центрифугированием до влажности 75%. Температуру в слое поддерживают на уровне 500°C. Твердый продукт после циклона обрабатывают 0,5 Н водным раствором серной кислоты в соотношении 10/1 на единицу массы твердого продукта. В качестве модельной сточной воды используют разбавленную сточную воду коммунального хозяйства с цветностью 3000° платинокобальтовой шкалы и химическим потреблением кислорода (ХПК) 410 мг O2/л с pH 11,0. Количество твердого продукта для очистки сточной воды выбирают 0,3 г на 1 л сточной воды. В 1 л сточной воды добавляют 3 мл суспензии, перемешивают и через 10 мин анализируют на цветность и ХПК. Удельная поверхность полученного твердого продукта 130 м2/г. Степень очистки воды по ХПК 79%, по цветности 93%. Содержание CO в отходящих газах 0,03%.

Пример 8.

Аналогичен примеру 7, только температуру в реакторе поддерживают на уровне 600°C, Удельная поверхность полученного твердого продукта 110 м2/г. Степень очистки сточной воды по ХПК 76%, по цветности 91%. Содержание CO в отходящих газах 0,02%.

Примеры 9-14 иллюстрируют второй вариант.

Пример 9.

Аналогичен примеру 2, только в реакторе температуру поддерживают на уровне 700°C. Парогазовую смесь анализируют на содержание токсичных примесей. Твердый продукт после циклона собирают в бункере и анализируют на содержание углерода и на токсичность. Содержание CO в отходящих газах 0,01%. Степень выгорания углерода из осадка 98%. Класс опасности твердых продуктов переработки 4 (малоопасные).

Пример 10.

Аналогичен примеру 9, только в реакторе температуру поддерживают на уровне 750°C. Содержание CO в отходящих газах менее 0,01%. Степень выгорания углерода из осадка 99,5%. Класс опасности твердых продуктов переработки 4 (малоопасные).

Пример 11.

Аналогичен примеру 7, только температуру в слое поддерживают на уровне 700°C. Парогазовую смесь анализируют на содержание токсичных примесей, в том числе на содержание диоксинов. Твердый продукт после циклона анализируют на содержание углерода и на токсичность. Содержание CO в отходящих газах 0,01%. Содержание диоксинов в дымовых газах в пересчете на наиболее опасные 2,3,7,8-тетрахлордибензодиоксин и 2,3,7,8-тетрахлордибензофуран находится ниже предела обнаружения 10·10-9 мг/м3. Максимальная по пробам концентрация ПХДД и ПХДФ в диоксиновом эквиваленте в дымовых газах после сжигания осадка в псевдоожиженном слое катализатора составляет 64·10-9 мг/м3. Эта концентрация существенно ниже норм ПДК в атмосферном воздухе по санитарным нормам США (100·10-9 мг/м3). Степень выгорания углерода из осадка 96%. Класс опасности твердых продуктов термоокислительной переработки 4 (малоопасные).

Пример 12.

Аналогичен примеру 11, только температуру в реакторе поддерживают на уровне 750°C. Содержание CO в отходящих газах менее 0,01%. Содержание диоксинов в дымовых газах в пересчете на наиболее опасные 2,3,7,8-тетрахлордибензодиоксин и 2,3,7,8-тетрахлордибензофуран находится ниже предела обнаружения 10·10-9 мг/м3. Максимальная по пробам концентрация ПХДД и ПХДФ в диоксиновом эквиваленте в дымовых газах после сжигания осадка в псевдоожиженном слое катализатора составляет 47·10-9 мг/м3. Степень выгорания углерода из осадка 99%. Класс опасности твердых продуктов термоокислительной переработки 4 (малоопасные).

Пример 13.

Аналогичен примеру 12, только избыток воздуха поддерживают на уровне 1,3. Содержание CO в отходящих газах менее 0,01%. Содержание диоксинов в дымовых газах в пересчете на наиболее опасные 2,3,7,8-тетрахлордибензодиоксин и 2,3,7,8-тетрахлордибензофуран находится ниже предела обнаружения 10·10-9 мг/м3. Максимальная по пробам концентрация ПХДД и ПХДФ в диоксиновом эквиваленте в дымовых газах после сжигания осадка в псевдоожиженном слое катализатора составляет 47·10-9 мг/м3. Степень выгорания углерода из осадка 99%. Класс опасности твердых продуктов термоокислительной переработки 4 (малоопасные).

Пример 14.

Аналогичен примеру 12, только избыток воздуха поддерживают на уровне 1,1. Содержание CO в отходящих газах увеличивается до 0,015%.

Как видно из приведенных примеров, предлагаемый способ позволяет снизить истирание катализатора и загрязнение продуктов термообработки соединениями хрома, повысить эффективность процесса в отношении дожигания CO и других токсичных примесей при сохранении адсорбционно-коагуляционных свойств твердых продуктов переработки. Способ также позволяет проводить переработку осадков до малотоксичных зольных осадков.

Источник поступления информации: Роспатент

Showing 1-10 of 12 items.
20.01.2013
№216.012.1bb3

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Группа изобретении относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам приготовления носителей для этих катализаторов. Описан катализатор, имеющий объем пор 0,3-0,7 см/г, удельную поверхность 170-300 м/г,...
Тип: Изобретение
Номер охранного документа: 0002472585
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1f1d

Литий-кобальт-оксидный материал и способ его приготовления

Изобретение может быть использовано в химической промышленности. Литий-кобальт-оксидный материал имеет состав LiCoO, где х может принимать значения от+0,2 до -0,2, постоянную сумму коэффициентов атомного содержания X+Y=2,0 и представляет собой диамагнитную матрицу на основе кристаллитов LiCoO,...
Тип: Изобретение
Номер охранного документа: 0002473466
Дата охранного документа: 27.01.2013
10.03.2013
№216.012.2d7e

Способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота

Изобретение относится к способу обезвреживания закиси азота, в том числе и низкоконцентрированных выбросов закиси азота, например, в отходящих газах производства азотной кислоты с использованием катализатора на основе железосодержащего цеолита. Описан способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002477177
Дата охранного документа: 10.03.2013
20.07.2013
№216.012.56d3

Синтез наночастиц оксида галлия в сверхкритической воде

Изобретение может быть использовано в химической промышленности. Получение наночастиц оксида галлия GaO осуществляют смешением 0,1 М водного раствора Ga(NO)·8НО со сверхкритической водой. Реакцию проводят при температуре 365-384°С и при давлении 220-240 атмосфер. Отношение объема раствора соли...
Тип: Изобретение
Номер охранного документа: 0002487835
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.599b

Синтез наночастиц оксида церия в сверхкритической воде

Изобретение может быть использовано в химической промышленности. Получение наночастиц оксида церия СеО осуществляют смешением 0,2 М раствора Се(NO)·6НО со сверхкритической водой. Реакцию проводят при температуре 370-390°С и при давлении 240-260 атмосфер. Отношение объема раствора соли церия к...
Тип: Изобретение
Номер охранного документа: 0002488560
Дата охранного документа: 27.07.2013
19.04.2019
№219.017.3385

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ окисления монооксида углерода

Изобретение относится к катализаторам низкотемпературного окисления монооксида углерода (СО), способу их получения и способу окисления СО с целью защиты окружающей среды от загрязнений СО. Катализатор окисления монооксида углерода представляет собой композицию Pd/C-K, где: С - мезопористый...
Тип: Изобретение
Номер охранного документа: 0002446878
Дата охранного документа: 10.04.2012
29.04.2019
№219.017.43ac

Способ активирования алюминия и устройство для его реализации

Изобретение относится к области химической технологии неорганических материалов. Способ активирования алюминия включает погружение образца алюминия в галламу в интервале температур плавления галламы и/или алюминия в присутствии ультразвуковых колебаний. Устройство для активирования алюминия...
Тип: Изобретение
Номер охранного документа: 0002414424
Дата охранного документа: 20.03.2011
09.05.2019
№219.017.4ede

Способ приготовления биметаллического катализатора (варианты) и его применение для топливных элементов

Изобретение относится к способам получения катализаторов топливных элементов. Описан способ приготовления биметаллического катализатора для топливных элементов состава MAu/С, где M=Pd или Pt, с содержанием металлов от 0.2 до 40 мас.%, заключающийся в нанесении соединения золота из водной,...
Тип: Изобретение
Номер охранного документа: 0002428769
Дата охранного документа: 10.09.2011
09.06.2019
№219.017.7fc1

Способ получения α-камфоленового спирта

Настоящее изобретение относится к способу получения α-камфоленового спирта, который обладает ценными органолептическими свойствами и может быть использован в парфюмерной промышленности. Способ заключается в превращении эпоксида α-пинена с применением гетерогенного катализатора в трубчатом...
Тип: Изобретение
Номер охранного документа: 0002461540
Дата охранного документа: 20.09.2012
19.06.2019
№219.017.88f4

Контактный раствор, способ и установка для очистки поверхности металлических сплавов, в том числе поверхности трещин и узких зазоров

Изобретение относится к очистке поверхности деталей из различных жаропрочных никелевых сплавов, применяемые для изготовления лопаток турбин авиационных двигателей, физико-химическим воздействием растворами, а также к установке для его осуществления. Контактный раствор содержит водный раствор...
Тип: Изобретение
Номер охранного документа: 0002419684
Дата охранного документа: 27.05.2011
Showing 1-10 of 96 items.
20.01.2013
№216.012.1bb2

Катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора

Изобретение относится к области разработки катализатора и процесса для процесса получения углеводородов путем каталитической гидродеоксигенации продуктов переработки растительной биомассы, включая биомассу микроводорослей. Описан катализатор гидродеоксигенации кислородорганических продуктов...
Тип: Изобретение
Номер охранного документа: 0002472584
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1f1d

Литий-кобальт-оксидный материал и способ его приготовления

Изобретение может быть использовано в химической промышленности. Литий-кобальт-оксидный материал имеет состав LiCoO, где х может принимать значения от+0,2 до -0,2, постоянную сумму коэффициентов атомного содержания X+Y=2,0 и представляет собой диамагнитную матрицу на основе кристаллитов LiCoO,...
Тип: Изобретение
Номер охранного документа: 0002473466
Дата охранного документа: 27.01.2013
27.06.2013
№216.012.503d

Способ получения фотокаталитически активного диоксида титана

Изобретение может быть использовано в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, катализаторов. Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана включает осаждение диоксида титана одновременным сливанием в воду...
Тип: Изобретение
Номер охранного документа: 0002486134
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.78c3

Катализатор гидрооблагораживания

Изобретение относится к области разработки катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан катализатор гидрооблагораживания кислородорганических продуктов переработки растительной биомассы, который является композитом, содержащим никель...
Тип: Изобретение
Номер охранного документа: 0002496577
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c5

Способ приготовления катализатора и способ каталитического сжигания топлив в псевдоожиженном слое

Изобретение относится к катализаторам. Описан способ приготовления катализатора сжигания топлива в псевдоожиженном слое на основе мартеновского шлака, в котором гранулы мартеновского шлака подвергают обработке парами воды при температуре максимального выделения водорода с последующим нанесением...
Тип: Изобретение
Номер охранного документа: 0002496579
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c6

Способ приготовления катализатора гидрооблагораживания

Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан способ приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы,...
Тип: Изобретение
Номер охранного документа: 0002496580
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.90a7

Способ получения нитродифениламинов

Изобретение относится к способу получения нитродифениламинов общей формулы где нитро-группа может находиться в орто-, мета- или пара-положении относительно анилинового фрагмента. Способ заключается во взаимодействии анилина с нитрогалогенбензолами общей формулы CH(NO)X, где X=Cl, Br, I, при...
Тип: Изобретение
Номер охранного документа: 0002502724
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90a8

Способ получения n-алкил-n'-фенил-пара-фенилендиаминов

Изобретение относится к усовершенствованному способу получения N-алкил-N'-фенил-п-фенилендиаминов общей формулы 1, где R, R - алкильные заместители. Способ заключается в восстановительном алкилировании 4-нитродифениламина (4-НДФА) алифатическими кетонами общей формулы R-CO-R, где R, R -...
Тип: Изобретение
Номер охранного документа: 0002502725
Дата охранного документа: 27.12.2013
+ добавить свой РИД