×
21.03.2019
219.016.eb22

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОЭЛЕКТРИЧЕСКИХ СТРУКТУР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электроники и гальванотехники и может быть использовано для изготовления твердотельных приборов на основе магнитострикционного эффекта. Способ включает обезжиривание пластинок цирконат-титаната свинца (ЦТС) или арсенида галлия в кипящем ацетоне, травление в разбавленном растворе соляной кислоты, промывку в деионизованной воде, сушку, напыление на упомянутые пластинки многослойного покрытия, отжигание, контактирование, обезжиривание, травление верхних напыленных слоев многослойного покрытия, декапирование, промывку и никелирование, отличающийся тем, что перед никелированием наносят гальванический слой олова с использованием электролита при следующем соотношении компонентов, г/л: олово сернокислое 40-80, серная кислота 100-120, препарат ОС-20 4-5, при катодной плотности тока 1-2,5 А/дм и одноминутном толчке тока, превышающем рабочую плотность тока в два раза, а затем осуществляют электроосаждение слоя никеля из сернокислого электролита, имеющего температуру 50-70°С, при катодной плотности тока 0,5-1,5 А/дм, затем эти слои покрытия чередуют, при этом толщина одного слоя никеля составляет 18-20 мкм, а толщину одного слоя олова устанавливают не меньше 6-8 мкм, при содержании никеля в многослойном покрытии не больше 65-66%. Технический результат: повышение магнитоэлектрического эффекта формируемых структур, увеличение адгезии покрытий к арсениду галлия и ЦТС, пластичности покрытий, снижение внутренних напряжений покрытий и повышение их качества. 2 з.п. ф-лы, 2 табл., 3 пр., 2 ил.

Изобретение относится к области электроники и гальванотехники. Разработанное многослойное покрытие на основе никеля может быть преимущественно использовано в электронике, в первую очередь для изготовления твердотельных приборов на основе магнитострикционного эффекта путем нанесения на арсенид галлия и цирконат-титанат свинца (ЦТС). В частности изобретение может быть применено для нанесения магнитного слоя в композиционных слоистых магнитоэлектрических (МЭ) структурах, состоящих из магнитострикционных и пьезоэлектрических подсистем.

Известен способ получения многослойных покрытий, в которых в качестве материала магнитного слоя используется сплав никель - железо, содержащий 15-25 ат. % железа (Fe), а в качестве материала немагнитного слоя медь (Cu) или благородные металлы: серебро (Ag) или золото (Au). Получены многослойные экраны, состоящие из десяти слоев магнитного слоя (Ni-Fe) толщиной по 20 мкм. Каждый из девяти слоев меди (Си) также толщиной 20 мкм. (Сафонов А., Сафонов Л. Электрические прямоугольные соединители. Многослойные металлизированные экраны защиты от ЭМП и способы их получения // Технологии в электронной промышленности, т. 1, №77, 2015 г, с. 62-67). Таким образом, известным способом, также как и предлагаемым способом, можно наносить многослойные покрытия, содержащие никель. В известном способе покрытия наносили на корпуса приборов, однако, при нанесении таких покрытий на арсенид галлия или цирконат-титанат свинца (ЦТС) происходит отслаивание покрытия или образование трещин, начиная с толщины 40 мкм, а даже при небольшом внешнем механическом воздействии происходит разрушение структуры.

В предлагаемом способе, прежде всего, используя прослойки олова, получаются многослойные покрытия на арсениде галлия и ЦТС с общей толщиной никелевого слоя 80 мкм, что позволяет существенно улучшить магнитоэлектрический (МЭ) эффект формируемых структур. Максимальный МЭ эффект наблюдается при толщине магнитного слоя примерно равной толщине пьезоэлектрического слоя, соответственно, чем больше толщина никелевого слоя приближается к толщине пьезоэлектрического слоя, тем больше МЭ эффект.

Наиболее близким аналогом (прототипом) предлагаемого изобретения является известный способ, описанный в работе Фирсовой Т.О. (Линейный и нелинейный магнитоэлектрический эффект в магнитострикционно-пьезоэлектрических структурах металл-пьезоэлектрик, металл-полимер-пьезоэлектрик. Дисс. на соиск. уч. степени к. ф-м. н., Великий Новгород, 2016, 112 с.). В этом известном способе предложена технология изготовления слоистых МЭ структур методом гальванического осаждения никеля с использованием подслоев, полученных методом напыления для улучшения адгезии на ЦТС и арсениде галлия. В этом известном способе, также как и в предлагаемом способе, для подготовки поверхности и повышения адгезии используются операции: кипячение в ацетоне, травления в 5% растворе соляной кислоты, напыление меди, золота и ванадия, декапирование. Однако, полученная толщина никелевого слоя не превышала 50 мкм (оптимальная толщина никелевого покрытия, рекомендуемая в этом известном способе 20-30 мкм), а используя предлагаемый способ, можно получать многослойные покрытия на ЦТС и арсениде галлия с общей толщиной никелевого слоя 80 мкм, что позволяет существенно улучшить магнитоэлектрический (МЭ) эффект формируемых структур.

Задачей изобретения является повышение магнитоэлектрического (МЭ) эффекта формируемых структур, увеличение адгезии покрытий к арсениду галлия и ЦСТ, повышение пластичности покрытий, уменьшение внутренних напряжений покрытий и повышение их качества.

Для решения данной задачи предложен гальванический способ изготовления магнитоэлектрических структур. В предлагаемом способе многослойное покрытие наносят на пластины арсенида галлия или ЦТС.

Способ изготовления магнитоэлектрических структур, включающий обезжиривание пластинок цирконат-титаната свинца (ЦТС) или арсенида галлия в кипящем ацетоне, травление в разбавленном растворе соляной кислоты, промывку в деионизованной воде, сушку, напыление на упомянутые пластинки многослойного покрытия, отжигание, контактирование, обезжиривание, травление верхних напыленных слоев многослойного покрытия, декапирование, промывку и никелирование, в котором перед никелированием наносят гальванический слой олова с использованием электролита при следующем соотношении компонентов, г/л: олово сернокислое 40-80, серная кислота 100-120, препарат ОС-20 4-5, при катодной плотности тока 1-2,5 А/дм2 и одноминутном толчке тока, превышающем рабочую плотность тока в два раза, а затем осуществляют электроосаждение слоя никеля из сернокислого электролита, имеющего температуру 50-70°С, при катодной плотности тока 0,5-1,5 А/дм2, затем эти слои покрытия чередуют, при этом толщина одного слоя никеля составляет 18-20 мкм, а толщину одного слоя олова устанавливают не меньше 6-8 мкм, при содержании никеля в многослойном покрытии не больше 65-66%.

Причем контактирование пластинок осуществляют с помощью медной или никелевой проволоки. На ЦТС напыляют слои ванадия, меди, ванадия, а на арсенид галлия - слои золота, германия, никеля, золота.

Для очистки поверхности пластин проводят их кипячение в ацетоне на водяной бане в течение 5-7 минут. Затем сушат в парах ацетона. Непосредственно перед напылением пластины арсенида галлия и пьезокерамику обрабатывают в растворе 5% соляной кислоты в течение 90 секунд, затем промывают в деионизованной воде 20 секунд, сушат. Следующая операция магнетронное напыление металлов или электроннолучевое напыление. Магнетронное напыление проводят при давлении 1,6⋅10-3 мм рт.ст. в плазме аргона. Средняя температура процесса 250°С. Сначала напыляют слой ванадия, затем слой меди, и закрывали медь слоем ванадия. Параметры процесса представлены в таблице 1.

Параметры процесса магнетронного напыления

Первый слой ванадия является адгезионным и для ЦТС, и для GaAs. Медный слой толщиной порядка 1 мкм является основой под гальваническое осаждение, поскольку медь на воздухе довольно быстро окисляется, ее защищают слоем ванадия.

После остывания установки разгружают камеру, образцы переворачивают и повторяют процесс напыления на другую сторону структуры. Электронно-лучевое напыление металлов напыления более структурировано, напыленные пленки получаются с равной толщиной по всей поверхности, «чистые», с минимальными микронеровностями по поверхности структуры. При выполнении данной операции используют систему металлов золото-германий-никель-золото. Напыление происходит при комнатной температуре. Процесс проводят при давлении 2-6⋅10-3 мм рт.ст. Время напыления золота 2-4 мин, германия 30-90 мин, никеля 1-2 мин и верхнего слоя золота 1-2 мин. Общая толщина покрытий около 0,13 мкм. Полученные напылением покрытия отжигают. Перед нанесением гальванических покрытий все образцы вначале контактируют с помощью никелевой или медной проволоки диаметром 0,2 мм или с помощью зажима. Затем обезжиривают венской известью или раствором лабомида 203. Венская известь - это смесь окиси кальция и окиси магния. Обезжиривание венской известью выполняется в мелкосерийном производстве вручную с помощью щетки. Щеткой натирают водную кашицу из венской извести на поверхности изделия, а затем промывают изделие водой. Эти операции выполняют три раза до полного смачивания поверхности изделия водой. Более производительной, менее трудоемкой и позволяющей получить высокое качество обезжиривания является операция обезжиривания с помощью лабомида 203. Для этого используют раствор с концентрацией лабомида 203 от 30 до 40 г/л, раствор подогревают до 70-80°С и обезжиривают 10-20 мин. После обезжиривания образцы промывают в горячей воде с температурой 60-80°С в течение 1 мин. Затем предварительно стравливают верхний слой напыленного ванадия до полного обнажения медного слоя или верхний слой золота до полного обнажения никелевого слоя, образец промывают в деионизованной воде в течение не менее 30 секунд, сушат. Обработку поверхности открывшегося слоя меди (никеля) проводят в растворе для декапирования (травитель для ванадия или золота) 1-3 секунды, промывают в воде. Травитель для ванадия: аммоний над сернокислый : кислота серная 1:1.

Травитель для золота : натрий серноватистокислый : тиомочевина: калий железосинеродистый 1:1:1. Следующая операция - декапирование для образцов с медным или никелевым покрытием, нанесенным напылением, выполняют в растворе серной кислоты 100-200 г/л в течение 0,5-1 мин. Затем осуществляют промывку в холодной водопроводной воде, а после в дистиллированной. Затем выполняют операцию электроосаждения покрытий. Для нанесения гальванических покрытий использовались электролиты, представленные в таблице №2. При электролитическом осаждении никеля возникают высокие внутренние напряжения, вследствие чего не удается получить толстые (более 50 мкм) слои. С целью повышения пластичности покрытий на основе никеля было решено ввести в такие покрытия прослойки из тонких оловянных слоев.

Составы электролитов и режимы электролиза, использованные для нанесения покрытий.

Для всех электролитов применялся толчок тока, т.е. в начале электролиза катодную плотность тока (кратковременно до 1 мин) повышали в 2 раза по сравнению с основной рабочей катодной плотностью тока. Толчок тока использовали для повышения адгезии покрытия.

В состав электролита никелирования входит сернокислый никель - это основной источник ионов никеля в электролите. Никель хлористый улучшает растворимость никелевых анодов, борная кислота - это буферная добавка, стабилизирующая рН электролита. Олово сернокислое в электролите лужения - это источник ионов олова, серная кислота повышает электропроводность и препятствует гидролизу олова и образованию 4-х валентных ионов олова, препарат ОС-20 улучшает качество покрытия, способствует получению мелкозернистых покрытий.

Электроосаждение многослойного покрытия необходимо начинать с нанесения первого слоя олова, при этом обязательно использовать толчок тока. Оптимальная толщина оловянных слоев в многослойном покрытии 6-12 мкм, при меньшей толщине оловянный слой недостаточно нивелирует, уменьшает внутренние напряжения, возникающие в никелевых слоях многослойного покрытия. Второй слой наносят из электролита никелирования, при этом оптимальная толщина никелевого слоя должна составлять 6-20 мкм. При меньшей толщине никелевого слоя увеличивается трудоемкость получения многослойного покрытия, соответственно снижается производительность. При толщине никелевого покрытия более 20 мкм существенно повышаются внутренние напряжения в покрытии, которые могут привести к образованию трещин или отслаиванию покрытия. Очень важно, чтобы содержание никеля в многослойном покрытии не превышало 65-66%. При более высоком содержании никеля в многослойном покрытии качество покрытия снижается. Таким образом, прежде всего, прослойки олова (с суммарным содержанием олова не менее 34%) позволили наносить более толстые покрытия никеля на пластины из арсенида галлия и ЦТС. Вместо 20-50 мкм удалось нанести многослойные покрытия с общей (суммарной) толщиной никелевого слоя 80 мкм.

Пример №1 получения конкретной многослойной МЭ структуры при использовании электролитов с минимальными значениями: концентрации компонентов, температуры, катодной плотностью тока и минимальным количеством слоев. Электролит никелирования содержал, г/л:

Никель сернокислый семиводный 200
Никель хлористый шестиводный 40
Борная кислота 20

Электролит лужения содержал, г/л:

Олово сернокислое 40
Серная кислота 100
Препарат ОС-20 4

Покрытия наносили на пластину арсенида галлия тип 360 АГЧП-8-а(габаритами 15×4×0,4 мм) с предварительно напыленными покрытиями: золото - германий - никель - золото, а также на пластину ЦТС 19 (размерами 18×8×0,4 мм) с предварительно напыленными покрытиями ванадий - медь - ванадий. Пластины контактировали, обезжиривали, стравливали верхние защитные, напыленные слои ванадия или золота, декапировали, промывали. Затем поочередно использовали электролитическое осаждение в сернокислом электролите лужения при комнатной температуре 18°С и катодной плотности тока 1 А/дм2 и процесс никелирования, при катодной плотности тока 0,5 А/дм и температуре электролита 50°С. В результате получили многослойное покрытие, состоящее из следующих слоев: никелевый толщиной 12 мкм, оловянный - 5,6 мкм, никелевый - 16,8 мкм, оловянный - 9,6 мкм, никелевый - 20 мкм, оловянный - 8,8 мкм, никелевый - 18 мкм, оловянный - 10,4 мкм. Таким образом, получили покрытие, состоящее из 4-х слоев никелевого покрытия общей толщиной 66,8 мкм и 4-х слоев оловянного покрытия общей толщиной 34,4 мкм. Общая толщина многослойного МЭ покрытия составила 101,2 мкм, содержание никеля в многослойном покрытии 66%. Полученное МЭ покрытие ровное, матовое и без видимых дефектов.

Пример №2 получения конкретной многослойной МЭ структуры при использовании электролитов с максимальными значениями: концентраций компонентов, температуры, катодной плотности тока и максимальным содержанием никеля в многослойном покрытии.

Электролит никелирования содержал, г/л:

Никель сернокислый семиводный 250
Никель хлористый шестиводный 60
Борная кислота 30

Электролит лужения содержал, г/л:

Олово сернокислое 80
Серная кислота 120
Препарат ОС-20 5

Покрытия наносили на пластину арсенида галлия тип 360 АГЧП-8-а (габаритами 15×4×0,4 мм) с предварительно напыленными покрытиями: золото - германий - никель - золото, а также на пластину ЦТС 19 (размерами 18×8×0,4 мм) с предварительно напыленными покрытиями ванадий - медь ванадий. Пластины контактировали, обезжиривали, стравливали верхние защитные, напыленные слои ванадия или золота, декапировали, промывали. Затем поочередно использовали электролитическое осаждение в сернокислом электролите лужения при комнатной температуре 25°С и катодной плотности тока 2,5 А/дм2 и процесс никелирования, при катодной плотности тока 1,5 А/дм2 и температуре электролита 70°С. В результате получили многослойное покрытие, состоящее из следующих слоев: никелевый толщиной 10 мкм, оловянный - 8 мкм, никелевый - 24 мкм, оловянный - 8 мкм, никелевый - 24 мкм, оловянный - 10 мкм, никелевый - 22 мкм, оловянный - 10 мкм. Таким образом, получили покрытие, состоящее из 4-х слоев никелевого покрытия общей толщиной 80 мкм и 4-х слоев оловянного покрытия общей толщиной 34 мкм. Общая толщина многослойного МЭ покрытия составила 114 мкм. По сравнению с многослойным покрытием, полученным в первой загрузке, многослойное покрытие, полученное во второй загрузке, менее пластичное и более хрупкое. Так как при шлифовании кромок пластин с покрытием произошло незначительное отслаивание покрытия около кромок пластин. Это, по-видимому, связано с тем, что во второй загрузке по сравнению с первой загрузкой увеличена доля никелевого покрытия в многослойном покрытии, она составила 70%.

Пример 3 получения конкретной многослойной МЭ структуры при использовании электролитов с промежуточными значениями: концентраций компонентов, температуры, катодной плотности тока.

Электролит никелирования содержал, г/л:

Никель сернокислый семиводный 248
Никель хлористый шестиводный 50
Борная кислота 25

Электролит лужения содержал, г/л:

Олово сернокислое 60
Серная кислота 105
Препарат ОС-20 4,5

Покрытия наносили на пластину арсенида галлия тип 360 АГЧП-8-а (габаритами 15×4×0,4 мм)с предварительно напыленными покрытиями: золото - германий - никель - золото, а также на пластину ЦТС 19 (размерами 18×8×0,4 мм) с предварительно напыленными покрытиями ванадий - медь - ванадий. Пластины контактировали, обезжиривали, стравливали верхний защитный, напыленный слой ванадия, декапировали, промывали. Затем поочередно использовали электролитическое осаждение в сернокислом электролите лужения при комнатной температуре 20°С. и катодной плотности тока 2 А/дм2 и процесс никелирования, при катодной плотности тока 1 А/дм2 и температуре электролита 60°С. В результате получили многослойную структуру, состоящую из следующих слоев: оловянный - 8 мкм, никелевый - 12 мкм, оловянный - 9,6 мкм, никелевый - 12 мкм, оловянный - 38,4 мкм, никелевый - 6 мкм, оловянный - 8 мкм, никелевый -12 мкм, оловянный - 7,2 мкм, никелевый - 12 мкм, оловянный - 9,6 мкм, никелевый - 12,6 мкм, оловянный - 9,6 мкм. Таким образом, получили сэндвич структуру, состоящую из шести слоев никеля, общей толщиной 66,6 мкм и семи слоев олова, общей толщиной 90,4 мкм. Общая толщина многослойной структуры составила 157 мкм, содержание никеля в многослойном покрытии составила 42,4%. Покрытия получились ровными, матовыми и без видимых дефектов.

Измерения магнитоэлектрического эффекта проводились путем регистрации электрического напряжения на обкладках образца при помещении его в переменное и постоянное подмагничивающее магнитные поля. Частота переменного магнитного поля менялась от 100 Гц до 500 кГц, чтобы захватить область электромеханического резонанса. Характеристикой магнитоэлектрического эффекта является магнитоэлектрический коэффициент по напряжению αЕ, который определяется следующим образом

где - напряженность индуцированного электрического поля, U - напряжение на обкладках образца, d - толщина образца, Н - напряженность переменного магнитного поля.

На фиг. 1 приведена частотная зависимость магнитоэлектрического коэффициента по напряжению с полем подмагничивания Hbias=360 Ое для образца, полученного в примере 3. Как видно из фиг. 1, частотная зависимость имеет резкий резонансный характер и обладает очень высокой добротностью.

На фиг. 2 представлена частотная зависимость эффекта в области резонанса. Как следует из фиг. 2, добротность системы Q=800, что гораздо лучше добротности образцов, полученных методом склеивания и сопоставима с добротностью объемных композитов.

Предлагаемое изобретение позволяет получить следующий технический результат: повысить магнитоэлектрический (МЭ) эффект формируемых структур, увеличить адгезию покрытий к арсениду галлия и ЦТС, увеличить пластичность покрытий, уменьшить внутренние напряжения покрытий, повысить их качество.


СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОЭЛЕКТРИЧЕСКИХ СТРУКТУР
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОЭЛЕКТРИЧЕСКИХ СТРУКТУР
Источник поступления информации: Роспатент

Showing 31-40 of 56 items.
26.05.2019
№219.017.615a

Способ лечения скелетных форм мезиального соотношения зубных рядов у пациентов с завершенным ростом лица

Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования при лечения скелетных форм мезиального соотношения зубных рядов без применения реконструктивных челюстно-лицевых операций по перемещению верхней и/или нижней челюсти. Расширение верхнего зубного ряда и...
Тип: Изобретение
Номер охранного документа: 0002689027
Дата охранного документа: 23.05.2019
03.07.2019
№219.017.a3df

Способ прогнозирования нарушения эвакуаторной функции илеоцекального отдела кишечника после торакальных операций

Изобретение относится к медицине, а именно к кардиологии и кардиохирургии, и может быть использовано для прогнозированию нарушения эвакуаторной функции илеоцекального отдела кишечника после торакальных операций. В предоперационном периоде натощак производят измерение расстояния между пупком и...
Тип: Изобретение
Номер охранного документа: 0002693163
Дата охранного документа: 01.07.2019
05.07.2019
№219.017.a59d

Способ прогнозирования нарушения эвакуаторной функции ректосигмоидного отдела кишечника после торакальных операций

Изобретение относится к медицине, а именно к хирургии, и может быть использовано для прогнозирования нарушения эвакуаторной функции ректосигмоидного отдела кишечника после торакальных операций. В предоперационном периоде натощак производят измерение расстояния между пупком и верхней передней...
Тип: Изобретение
Номер охранного документа: 0002693672
Дата охранного документа: 03.07.2019
06.07.2019
№219.017.a711

Способ и устройство для определения ишемического состояния головного мозга

Группа изобретений относится к медицинской технике, а именно к средствам функциональной диагностики, нейрохирургии и неврологии, и может быть использована для вычисления скорости кровотока в сосудах. Способ определения ишемического состояния головного мозга включает допплерографическое...
Тип: Изобретение
Номер охранного документа: 0002693819
Дата охранного документа: 04.07.2019
06.08.2019
№219.017.bcea

Способ моделирования лимфовенозной недостаточности в тазовых органах

Изобретение относится к медицине, в частности к области патологической физиологии, экспериментальной урологии и гинекологии. Производят мобилизацию внутренних подвздошных вен, после чего производят их легирование и затем удаляют лимфатические узлы, обеспечивающие отток лимфы от тазовых органов....
Тип: Изобретение
Номер охранного документа: 0002696532
Дата охранного документа: 02.08.2019
20.08.2019
№219.017.c186

Способ моделирования хронического эмоционально-информационного стресса в эксперименте

Изобретение относится к психологии и медицине, к области психофизиологии и патологической физиологии и непосредственно к моделированию психологического стресса в эксперименте. Для моделирования хронического эмоционально-иммобилизационного стресса в эксперименте после фиксации животного дважды с...
Тип: Изобретение
Номер охранного документа: 0002697655
Дата охранного документа: 16.08.2019
02.10.2019
№219.017.cb64

Способ лечения пациентов со сниженной высотой лица и деформацией окклюзионной плоскости

Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования при восстановлении сниженной высоты лица и окклюзионной плоскости у пациентов с такими заболеваниями, как: повышенная стираемость зубов декомпенсированной и субкомпенсированной формы, частичная потеря...
Тип: Изобретение
Номер охранного документа: 0002701098
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cd76

Способ моделирования острого эмоционально-иммобилизационного стресса в эксперименте

Изобретение относится к медицине, а именно к психологии и психофизиологии, и может быть использовано для моделирования острого эмоционально-иммобилизационного стресса в эксперименте. Для этого осуществляют иммобилизацию животного. После этого дважды с интервалом 3 часа внутриперитонеально...
Тип: Изобретение
Номер охранного документа: 0002701218
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.d131

Способ лечения зубочелюстных аномалий у пациентов с вынужденным положением нижней челюсти с помощью эластопозиционеров

Изобретение относится к стоматологии, а именно к ортодонтии, и предназначено для использования при лечении зубочелюстных аномалий у пациентов с вынужденным положением нижней челюсти. Определяют и регистрируют положение нижней челюсти путем расслабления жевательных мышц методом чрескожной...
Тип: Изобретение
Номер охранного документа: 0002700987
Дата охранного документа: 24.09.2019
06.10.2019
№219.017.d31e

Способ профилактики и лечения нарушений моторной и эвакуационной функции кишечника после трансуретральной литотрипсии

Изобретение относится к медицине, а именно к хирургии и урологии. Под контролем ультразвукового исследования с параллельной доплерографией, производят прокол мягких тканей брюшной стенки в точке, расположенной на 3 см выше гребня левой подвздошной кости по задней подмышечной линии до...
Тип: Изобретение
Номер охранного документа: 0002702094
Дата охранного документа: 04.10.2019
Showing 1-9 of 9 items.
27.02.2013
№216.012.2ca9

Магнитоэлектрический трансформатор

Изобретение относится к электронике и может быть использовано в радиотехнике для преобразования переменного напряжения. Магнитоэлектрический трансформатор представляет собой структуру, состоящую из катушки индуктивности, намотанной на магнитоэлектрический конденсатор, диэлектриком которого...
Тип: Изобретение
Номер охранного документа: 0002476960
Дата охранного документа: 27.02.2013
20.08.2014
№216.012.ec45

Дифференциальный датчик постоянного магнитного поля

Изобретение относится к измерительной технике и представляет собой дифференциальный датчик постоянного магнитного поля. Датчик состоит из конденсатора, диэлектриком которого является магнитострикционно-пьезоэлектрический композит, помещенный между катушками Гельмгольца, создающими заданное...
Тип: Изобретение
Номер охранного документа: 0002526293
Дата охранного документа: 20.08.2014
27.02.2015
№216.013.2db0

Способ нанесения декоративно-фактурного покрытия

Изобретение относится к области нанесения лакокрасочных покрытий на основе жидкого стекла. Может быть использовано при изготовлении художественных изделий, для оформления современных интерьеров, во флористике и других областях, где требуется использовать красивую и необычную фактуру. Вначале в...
Тип: Изобретение
Номер охранного документа: 0002543164
Дата охранного документа: 27.02.2015
10.08.2015
№216.013.6d94

Способ электрохимического чернения стали

Изобретение относится к области нанесения защитно-декоративных покрытий и может быть использовано для декорирования и защиты от коррозии стальных деталей и изделий, в частности покрытие может быть использовано для декоративной отделки художественных изделий полученных методами ковки, чеканки,...
Тип: Изобретение
Номер охранного документа: 0002559610
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.770e

Кольцевой магнитоэлектрический трансформатор с подмагничиванием

Изобретение относится к электротехнике и может быть использовано в цепях переменного тока для преобразования напряжения. Кольцевой магнитоэлектрический трансформатор с подмагничиванием представляет собой структуру, выполненную в виде включенного во входную цепь магнитоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002562067
Дата охранного документа: 10.09.2015
29.12.2017
№217.015.fb0b

Радиационная газовая горелка

Изобретение относится к области теплоэнергетики, а именно к газовым радиационным горелкам. Радиационная газовая горелка содержит полый корпус с патрубками подвода газа и инфракрасный излучатель, корпус выполнен в виде цилиндрического объёма переменного диаметра с конфузором, горловиной и...
Тип: Изобретение
Номер охранного документа: 0002640305
Дата охранного документа: 27.12.2017
13.02.2018
№218.016.239e

Магнитоэлектрический преобразователь ток - напряжение с удвоением частоты

Изобретение относится к электротехнике и может быть использовано в цепях переменного тока для преобразования тока в напряжение с удвоением частоты выходного сигнала. Преобразователь представляет собой структуру из конденсатора, обкладками которого являются изготовленные из магнитострикционного...
Тип: Изобретение
Номер охранного документа: 0002642497
Дата охранного документа: 25.01.2018
29.05.2018
№218.016.58a2

Способ гальванической металлизации молибденовых сплавов

Изобретение относится к области гальванотехники, в частности к электролитическому нанесению покрытий из меди и сплава олово-висмут на молибденовые сплавы. Способ включает электрохимическое обезжиривание деталей, анодное травление, электроосаждение промежуточного слоя, повышающего адгезию...
Тип: Изобретение
Номер охранного документа: 0002653515
Дата охранного документа: 10.05.2018
10.07.2019
№219.017.b09a

Способ осаждения композиционных покрытий никель-ванадий-фосфор-нитрид бора

Способ относится к области гальванотехники и может быть использован в машиностроении при изготовлении деталей и инструментов с износостойкими покрытиями. Способ включает осаждение покрытия из раствора, содержащего, г/л: никель сернокислый 40-60, борную кислоту 20-30, гипофосфит натрия 10-30,...
Тип: Изобретение
Номер охранного документа: 0002437967
Дата охранного документа: 27.12.2011
+ добавить свой РИД