×
20.03.2019
219.016.e97f

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСИДА ЦИНКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической технологии. Способ получения пероксида цинка заключается во взаимодействии оксида цинка и пероксида водорода и последующей дегидратации продукта реакции. Взаимодействие компонентов осуществляют при мольном соотношении оксид цинка/пероксид водорода, равном ZnO/HO=1,0÷0,85, и температуре в зоне синтеза 15-30°С. При смешении исходных компонентов оксид цинка добавляют к предварительно стабилизированному сульфатом магния пероксиду водорода при мольном соотношении пероксид водорода/сульфат магния, равном HO/MgSO=700÷850. Дегидратацию отфильтрованного продукта реакции осуществляют путем воздействия излучения сверхвысокой частоты (СВЧ). Изобретение позволяет повысить содержание основного вещества в получаемом продукте, снизить энергозатраты. 4 з.п. ф-лы, 1 ил., 1 табл., 4 пр.

Изобретение относится к способам получения пероксида цинка и может быть использовано в различных отраслях деятельности человека, например в медицине и стоматологии, пиротехнике, птицеводстве и др.

Способы получения пероксида цинка можно с достаточной степенью точности разбить на 4 группы:

1) электролиз солей цинка;

2) взаимодействие солей цинка в щелочной среде с растворами пероксида водорода и последующей сушкой полученных остатков;

3) взаимодействие гидроксида цинка с растворами пероксида водорода с последующей дегидратацией продукта реакции;

4) взаимодействие оксида цинка с растворами пероксида водорода и последующей дегидратацией продукта реакции.

Способы первой группы [патент Германии №151129, 1902 г., патент Германии №177297, 1904 г.] заключаются в электролизе раствора хлорида цинка, помещаемого в анодное пространство. В катодном пространстве находится раствор хлорида цинка с добавкой пероксида водорода. При этом обязательным является использование платиновых электродов.

К основным недостаткам данной группы способов получения пероксида цинка можно отнести сложность аппаратурного оформления процесса, его энергоемкость и низкое содержание основного вещества в продукте синтеза.

Способы второй группы заключаются во взаимодействии солей цинка в щелочной среде с растворами пероксида водорода с последующей сушкой полученных остатков. Известен способ получения пероксида цинка, заключающийся во взаимодействии пероксида водорода концентрацией около 12% весовых, концентрированной серной кислоты и оксида цинка при температуре в зоне реакции не выше 35-40°С. При этом вначале оксид цинка взаимодействует с серной кислотой, образуя сульфат цинка, который затем взаимодействует с пероксидом водорода с образованием пероксида цинка. В реакционную смесь также добавляют силикат натрия, выступающий в качестве стабилизатора полученного раствора [патент США №2563442, НКИ 23-147, 1947 г.]. Полученный в результате взаимодействия осадок отделяется центрифугированием, отмывается от солей большим количеством воды и сушится при температуре 90-100°С в течение 5-6 часов. Конечный продукт содержит до 66,5% весовых пероксида цинка.

Известен способ получения пероксида цинка, заключающийся в растворении безводного хлорида цинка в воде, добавлении концентрированной соляной кислоты, охлаждении полученного раствора до 7-8°С и добавлении охлажденного до 10-12°С раствора пероксида натрия (при данных условиях пероксид натрия гидролизуется с образованием пероксида водорода) таким образом, чтобы pH раствора находилось в пределах от 9,0 от 9,5 [патент США №2304104, НКИ 23-147, 1938 г.]. После отделения полученного осадка фильтрованием его промывают большим количеством воды и сушат на воздухе при температуре 55-60°С в течение 15-20 часов.

Известен способ получения пероксида цинка, в котором нитрат цинка взаимодействует с раствором пероксида водорода концентрацией 30% в щелочной среде [Л.В.Ладейнова. Изучение систем с концентрированной перекисью водорода / Известия АН СССР. ОХН. 1959. №. 2. с.195-201]. Щелочная среда создается водным раствором аммиака. Полученный осадок отфильтровывается от маточного раствора, промывается и сушится в вакууме при повышенной температуре. Конечный продукт содержит до 75% ZnO2.

У всех перечисленных выше способов [патент США №2563442, НКИ 23-147, 1947 г, патент США №2304104, НКИ 23-147, 1938 г, Л.В.Ладейнова. Изучение систем с концентрированной перекисью водорода. / Известия АН СССР. ОХН. 1959. №.2. с.195-201] есть несколько общих недостатков. Во-первых, длительность процесса и большой расход реагентов, связанных с необходимостью тщательной промывки дистиллированной водой образующегося осадка. Во-вторых, пероксид цинка, в отличие от пероксидов щелочноземельных металлов, не образует истинных кристаллогидратов, а из маточного раствора ZnO2 кристаллизуется в виде мелкодисперсного осадка, способного при кристаллизации загрязняться большим количеством маточного раствора. Это приводит к тому, что образующийся в процессе сушки ZnO2 разлагается не только водяным паром, но на его разложение оказывают существенное каталитическое действие соли, захваченные поверхностью твердой фазы в процессе кристаллизации из маточного раствора, что приводит к снижению содержания основного вещества в продукте синтеза.

Наиболее распространенные и эффективные способы получения пероксида цинка заключаются во взаимодействии оксида либо гидроксида цинка с растворами пероксида водорода.

Известен способ получения пероксида цинка путем взаимодействия гидроксида цинка с пероксидом водорода [С.З.Макаров, Л.В.Ладейнова. К вопросу о получении перекисных соединений цинка / ЖНХ. 1956. Т.1. Вып.12. с.2708-27111]. По данному способу к гидроксиду цинка, не содержащему карбонаты, при перемешивании добавляется вода до получения суспензии, затем при постоянном перемешивании добавляется пероксид водорода концентрацией 28% до создания концентрации пероксида водорода 5% весовых в жидкой фазе. После трехчасового перемешивания продукт фильтруют, промывают большим количеством дистиллированной воды и сушат в вакууме при температуре 70-80°С в течение 3 часов. Полученный продукт содержит около 75% весовых пероксида цинка.

Хотя пероксид цинка, полученный данным способом, также в процессе кристаллизации увлекает маточный раствор, последний состоит только из воды и пероксида водорода, которые в процессе сушки пероксида цинка не оказывают каталитического действия на его разложение. Однако данному способу также присущи недостатки.

Во-первых, добавление пероксида водорода к суспензии гидроксида цинка вызывает гетерофазный распад H2O2 на поверхности твердой фазы, что приводит при стремлении получать конечный продукт с максимально возможным содержанием ZnO2 к повышенному расходу пероксида водорода из-за необходимости введения последнего в реагирующую систему в значительном избытке. По этой же причине из-за высокой вероятности возникновения пожароопасной ситуации вследствие выделения при распаде пероксида водорода одного из сильнейших окислителей - атомарного кислорода, невозможно использование высококонцентрированных растворов пероксида водорода, что, в свою очередь, увеличивает время производственного цикла.

Во-вторых, - невысокая экономичность процесса, обусловленная необходимостью использования большого количества дистиллированной воды при промывке и длительной сушке в вакууме при повышенной температуре остатка, отделенного от маточного раствора.

Кроме того, при производстве пероксида цинка указанным способом остается значительное количество жидких отходов после стадий фильтрации и промывки, требующих утилизации.

Известен способ получения пероксида цинка, заключающийся во взаимодействии при интенсивном перемешивании твердого оксида цинка и раствора пероксида водорода концентрацией от 30 до 70% весовых, предварительно стабилизированного анионами [патент США №4427644, МПК C01D 1/02, 1984 г.]. При этом раствор пероксида водорода добавляют к твердому оксиду цинка. Мольное соотношение пероксид водорода / оксид цинка приблизительно равно стехиометрическому. Полученную суспензию интенсивно перемешивают при охлаждении и через 5-7 минут подвергают дегидратации в распылительной сушилке. При этом температура в распылительной сушилке составляет 250°С, а на выходе из нее - 110-120°С. Конечный продукт содержит 67,4% весовых пероксида цинка.

Хотя данный способ получения пероксида цинка и снижает время получения единицы конечной продукции, он отличается высокой энергоемкостью производства, обусловленной необходимостью нагрева больших объемов сушильного агента (воздуха), до температуры 250°С и выбросе в окружающую среду отработанного сушильного агента, имеющего температуру 120°С. Это обусловлено тем, что в данном способе используются растворы пероксида водорода не очень высокой концентрации и отсутствует стадия фильтрации, что приводит к необходимости перевода большого количества воды из жидкого состояния в газообразное. Кроме того, полученный препарат имеет недостаточно высокое содержание основного вещества.

Задачей изобретения является создание экономичного способа получения пероксида цинка (ZnO2), обеспечивающего получение продукта с высоким содержанием основного вещества.

Технический результат заключается в снижении энергозатрат на единицу конечной продукции и повышении содержания основного вещества в продукте синтеза.

Технический результат достигается тем, что в способе получения пероксида цинка путем взаимодействия оксида цинка и пероксида водорода, включающем смешение оксида цинка и стабилизированного раствора пероксида водорода и последующую дегидратацию полученной в результате взаимодействия системы, в качестве стабилизатора раствора пероксида водорода используют сульфат магния, смешение осуществляют введением оксида цинка в стабилизированный сульфатом магния раствор пероксида водорода, при этом дополнительно осуществляют отделение твердой фазы фильтрацией, а дегидратацию твердой фазы осуществляют воздействием излучения сверхвысокой частоты (СВЧ).

При этом мольное соотношение пероксид водорода / сульфат магния целесообразно поддерживать равным H2O2/MgSO4=700÷850, мольное соотношение оксид цинка / пероксид водорода при смешении компонентов целесообразно поддерживать равным ZnO/H2O2=1,0÷0,85, а температуру в зоне синтеза целесообразно поддерживать 15-30°С.

Предпочтительно осуществлять введение оксида цинка в стабилизированный сульфатом магния раствор пероксида водорода двумя частями: сначала вводят примерно 5% весовых требуемого количества, а через 10-15 минут - остальное.

До настоящего времени не существует строго научных основ для выбора стабилизаторов различных растворов перекисных соединений, препятствующих их разложению [Г.А.Серышев. Химия и технология перекиси водорода. - Л.: Химия, - 1984. - С.182]. Поэтому сложно однозначно оценить влияние того или иного иона или их ассоциатов, содержащихся в многокомпонентном растворе, на стабильность системы в целом. Нахождение стабилизатора для конкретной цели - задача, которая решается только эмпирическим путем. Причем на устойчивость системы в целом влияет не только качественный и количественный состав жидкой фазы системы, содержащей пероксид водорода, но и порядок введения компонентов в раствор.

Использование в качестве стабилизатора пероксида водорода сульфата магния перед добавлением оксида цинка дает возможность использовать для синтеза в качестве исходных компонентов высоко концентрированные растворы пероксида водорода (более 50% весовых). Это позволяет не только снизить расход пероксида водорода на получение единицы целевого продукта и повысить в нем содержание основного вещества (пероксида цинка), но и сократить время смешения исходных компонентов (а следовательно, и время производственного цикла в целом) и уменьшить количество жидких отходов. Также было отмечено, что после добавления первой порции оксида цинка (примерно 5% от общей массы) к стабилизированному сульфатом магния раствору пероксида водорода образуется коллоид, которому следует дать равномерно распределиться по всему объему раствора и после этого продолжить добавление оставшегося оксида цинка. Это обусловлено тем, что коллоидные частицы, содержащиеся в жидкой фазе, способны вступать в реакцию со свободными радикалами, образующимися при разложении Н2О2, и предотвращать возможное протекание цепной реакции его распада.

Введение оксида цинка в стабилизированный раствор пероксида водорода (а не наоборот) позволяет снизить количество разложившегося Н2О2 на поверхности твердой фазы вследствие ее каталитического воздействия, что также приводит к снижению расхода исходных компонентов. Кроме того, именно такая последовательность смешения исходных реагентов позволяет получать в результате взаимодействия кристаллы твердой фазы более крупного размера, что не только упрощает процесс ее отделения от маточного раствора, но и позволяет минимизировать количество посторонних ионов, захватываемых твердой фазой в процессе кристаллизации.

Мольное соотношение оксид цинка / пероксид водорода, равное ZnO/H2O2=1,0÷0,85, обеспечивает максимальное содержание пероксида цинка в конечном продукте при минимальных расходах исходного сырья.

Стадия фильтрации гетерогенной системы, образующейся после смешения исходных компонентов, позволяет минимизировать в твердом остатке количество воды, которую необходимо переводить в газообразное состояние на стадии дегидратации, что снижает энергозатраты на единицу конечного продукта.

При дегидратации отфильтрованного твердого остатка, полученного в результате взаимодействия пероксида водорода и оксида цинка, путем воздействия СВЧ излучения в твердой фазе возникают объемные источники тепла, что приводит к увеличению скорости удаления паров воды из зоны сушки без значительного увеличения температуры. При данном способе сушки температура внутри нагреваемого тела выше, чем в поверхностных слоях, с которых происходит удаление влаги, что позволяет равномерно удалять пары воды из всего объема твердой фазы. Это приводит к тому, что вероятность химического взаимодействия целевого продукта (ZnO2) с парами воды, приводящая к образованию гидроксида цинка, существенно понижается, т.е. возрастает содержание пероксида цинка в продукте синтеза. Для интенсификации удаления паров воды из зоны сушки возможен обдув образцов током предварительно осушенного инертного газа.

Предложенный способ позволяет получать конечный продукт с содержанием пероксида цинка до 77,8% весовых. Использование указанных выше технологических приемов позволяет снизить энергозатраты в 7-8 раз.

Способ осуществляют следующим образом. В реактор с мешалкой и рубашкой, в которую может подаваться хладагент, помещают водный раствор пероксида водорода концентрацией 50-85%. Затем при перемешивании добавляют требуемое количество сульфата магния (мольное соотношении пероксид водорода / сульфат магния H2O2/MgSO4=700÷850). После его полного растворения двумя порциями добавляют необходимое количество оксида цинка (мольное соотношение оксид цинка / пероксид водорода ZnO/H2O2=1,0÷0,85) таким образом, чтобы температура в зоне реакции, контролируемая термометром, не превышала 30°С. После добавления всего оксида цинка образовавшуюся твердую фазу отфильтровывают от маточного раствора и подвергают дегидратации путем воздействия излучения сверхвысокой частоты (СВЧ).

Пример 1.

К 1000 мл 50% водного раствора пероксида водорода добавляют при постоянном перемешивании 3 г сульфата магния. Мольное соотношении пероксид водорода / сульфат магния H2O2/MgSO4=700. После полного растворения сульфата магния добавляют вначале 71,2 г оксида цинка, а через 10 минут еще 1353,5 г ZnO так, чтобы температура в зоне реакции не превышала 15°С. Мольное соотношение оксид цинка / пероксид водорода ZnO/H2O2=1,0. После добавления всего оксида цинка образовавшуюся твердую фазу отделяют фильтрованием от маточного раствора и подвергают дегидратации путем воздействия излучения сверхвысокой частоты (СВЧ). Дегидратацию осуществляют при частоте излучения 2500 МГц, мощности 850 Вт в течение 23 минут. Получают 2143,4 г продукта с содержанием пероксида цинка 75,2% весовых.

Пример 2.

К 515 мл 85% водного раствора пероксида водорода добавляют при постоянном перемешивании 2,81 г сульфата магния. Мольное соотношении пероксид водорода / сульфат магния H2O2/MgSO4=750. После полного растворения сульфата магния добавляют вначале 67,77 г оксида цинка, а через 10 минут еще 1285,7 г ZnO так, чтобы температура в зоне реакции не превышала 30°С. Мольное соотношение оксид цинка / пероксид водорода ZnO/Н2О2=0,95. После добавления всего оксида цинка образовавшуюся твердую фазу отделяют фильтрованием от маточного раствора и подвергают дегидратации путем воздействия излучения сверхвысокой частоты (СВЧ). Дегидратацию осуществляют при частоте излучения 2500 МГц, мощности 850 Вт в течение 22 минут. Получают 1931,6 г продукта с содержанием пероксида цинка 75,8% весовых.

Пример 3.

К 515 мл 85% водного раствора пероксида водорода добавляют при постоянном перемешивании 2,64 г сульфата магния. Мольное соотношении пероксид водорода / сульфат магния H2O2/MgSO4=800. После полного растворения сульфата магния добавляют вначале 61,14 г оксида цинка, а через 10 минут еще 1221,1 г ZnO так, чтобы температура в зоне реакции не превышала 28°С. Мольное соотношение оксид цинка / пероксид водорода ZnO/H2O2=0,9. После добавления всего оксида цинка образовавшуюся твердую фазу отделяют фильтрованием от маточного раствора и подвергают дегидратации путем воздействия излучения сверхвысокой частоты (СВЧ). Дегидратацию осуществляют при частоте излучения 2500 МГц, мощности 850 Вт в течение 21,5 минут. Получают 1760,2 г продукта с содержанием пероксида цинка 77,7% весовых.

Пример 4.

К 515 мл 85% водного раствора пероксида водорода добавляют при постоянном перемешивании 2,48 г сульфата магния. Мольное соотношении пероксид водорода / сульфат магния H2O2/MgSO4=850. После полного растворения сульфата магния добавляют вначале 62,1 г оксида цинка, а через 15 минут еще 1148,9 г ZnO так, чтобы температура в зоне реакции не превышала 30°С. Мольное соотношение оксид цинка / пероксид водорода ZnO/H2O2=0,85. После добавления всего оксида цинка образовавшуюся твердую фазу отделяют фильтрованием от маточного раствора и подвергают дегидратации путем воздействия излучения сверхвысокой частоты. Дегидратацию осуществляют при частоте излучения 2500 МГц, мощности 850 Вт в течение 21,4 минут. Получают 1792,7 г продукта с содержанием ZnO2 76,1% весовых.

Пример 5.

К 515 мл 85% водного раствора пероксида водорода добавляют при постоянном перемешивании 2,64 г сульфата магния. Мольное соотношении пероксид водорода / сульфат магния H2O2/MgSO4=800. После полного растворения сульфата магния добавляют вначале 64,1 г оксида цинка, а через 10 минут еще 1218,3 г ZnO так, чтобы температура в зоне реакции не превышала 30°С. Мольное соотношение оксид цинка / пероксид водорода ZnO/Н2О2=0,9. После добавления всего оксида цинка образовавшуюся твердую фазу отделяют фильтрованием от маточного раствора и подвергают дегидратации путем воздействия излучения сверхвысокой частоты (СВЧ). Дегидратацию осуществляют при частоте излучения 2500 МГц, мощности 850 Вт в течение 20,4 минут. Получают 1703,8 г продукта с содержанием пероксида цинка 77,8% весовых.

Содержание основного вещества в продукте синтеза и количество испаряемой воды при получении 1 кг готового продукта по примерам 1-5 приведены в Таблице 1. Также в Таблице 1 в качестве сравнения (пример 6) приведено содержание ZnO2 и количество испаряемой воды при получении 1 кг готового продукта, рассчитанные на основании данных, представленных в прототипе [патент США №4427644]. За критерий потребляемой энергии при производстве 1 кг целевого продукта принято количество воды, переводимой в результате процесса из жидкого состояния в газообразное.

Таблица 1
Содержание ZnO2 в продукте синтеза и количество испаряемой жидкости при получении 1 кг целевого продукта
Получение пероксида цинка Количество испаряемой при производстве воды, кг/кг Содержание пероксида цинка в конечном продукте, вес.%
По примеру 1 92,8 75,2
По примеру 2 93,4 75,8
По примеру 3 94,6 77,7
По примеру 4 93,8 76,1
По примеру 5 93,2 77,8
По примеру 6 711,6 67,4

Полученный заявляемым способом продукт был исследован методом качественного рентгено-фазового анализа. На рисунке представлена дифрактограмма образца пероксида цинка, полученного по примеру 5 (дифрактограммы образцов пероксида цинка, полученного по примерам 1-4, тождественны по своему характеру дифрактограмме образца пероксида цинка, полученного по примеру 5). Присутствие на дифрактограмме дифракционных максимумов (при угле скольжения 2Ө=31,71 - рефлекс, соответствующий межплоскостному расстоянию d=2,81°Å, при угле скольжения 2Ө=36,83 - рефлекс, соответствующий межплоскостному расстоянию d=2,43 Å при угле скольжения 2Ө=53,09 - рефлекс, соответствующий межплоскостному расстоянию d=1,72 Å, при угле скольжения 2Ө=63,08 - рефлекс, соответствующий межплоскостному расстоянию d=1,47 Å, при угле скольжения 2Ө=66,28 - рефлекс, соответствующий межплоскостному расстоянию d=1,41 Å, при угле скольжения 2Ө=86,71 - рефлекс, соответствующий межплоскостному расстоянию d=1,12 Å, при угле скольжения 2Ө=90,05 - рефлекс, соответствующий межплоскостному расстоянию d=1,09 Å, при угле скольжения 2Ө=101,06 - рефлекс, соответствующий межплоскостному расстоянию d=1,00 Å, при угле скольжения 2Ө=110,05 - рефлекс, соответствующий межплоскостному расстоянию d=0,94 Å) свидетельствует о наличие в исследованном образце только пероксида цинка и отсутствии других соединений Zn2+.

Как видно из приведенных в Таблице 1 данных, предложенный способ получения пероксида цинка позволяет снизить энергозатраты на производство единицы конечного продукта и обеспечивает более высокое содержание основного вещества в продукте реакции.

Источник поступления информации: Роспатент

Showing 91-93 of 93 items.
19.06.2019
№219.017.89ff

Способ получения продукта для регенерации воздуха

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в и индивидуальных дыхательных аппаратах на химически связанном кислороде. Способ получения продукта для регенерации воздуха заключается во...
Тип: Изобретение
Номер охранного документа: 0002408403
Дата охранного документа: 10.01.2011
29.06.2019
№219.017.9d6e

Изолирующая дыхательная система

Изобретение относится к устройствам для защиты органов дыхания от ядовитых и вредных в герметичных и полугерметичных помещениях. Система содержит рециркуляционный контур очистки и вентиляции дыхательной газовой среды, модули индивидуального дыхания, источник кислорода и баллон-хранитель газовой...
Тип: Изобретение
Номер охранного документа: 0002352370
Дата охранного документа: 20.04.2009
29.06.2019
№219.017.a13e

Способ получения агломерированного цеолита

Изобретение относится к способу получения агломерированного цеолитового сорбента в виде сферических гранул. Способ включает приготовление суспензии порошкообразного цеолита со связующим, диспергирование суспензии в жидкость и отделение гранул от жидкости и их термообработку. При этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002444404
Дата охранного документа: 10.03.2012
Showing 91-100 of 108 items.
19.04.2019
№219.017.32b8

Способ получения продукта для регенерации воздуха

Изобретение может быть использовано в системах жизнеобеспечения человека. Исходные компоненты: надпероксид калия и оксид кальция, или оксид магния, или их смесь перемешивают до получения однородной шихты. Перед смешением компонентов осуществляют термическую обработку надпероксида калия в...
Тип: Изобретение
Номер охранного документа: 0002405617
Дата охранного документа: 10.12.2010
18.05.2019
№219.017.54d4

Патрон для регенерации воздуха

Изобретение относится к устройствам для регенерации воздуха, содержащим регенеративный продукт на основе надпероксидов щелочных и/или щелочно-земельных металлов. Патрон для регенерации воздуха содержит корпус и размещенный в нем регенеративный продукт. В продукте установлены воздуховоды,...
Тип: Изобретение
Номер охранного документа: 0002291728
Дата охранного документа: 20.01.2007
18.05.2019
№219.017.5679

Кассета для поглотительного патрона

Изобретение относится к конструкции кассет для снаряжения поглотительных патронов в средствах защиты органов дыхания. Кассета для поглотительного патрона выполнена в виде заключенных в обечайку свернутых в рулон листов поглотителя, между витками которого помещена разделительная сетка. Листы...
Тип: Изобретение
Номер охранного документа: 0002399393
Дата охранного документа: 20.09.2010
18.05.2019
№219.017.57b3

Состав пускового брикета для изолирующего дыхательного аппарата

Изобретение относится к составам химических веществ, используемых в изолирующих дыхательных аппаратах на химически связанном кислороде, в частности к составам пусковых брикетов, генерирующих кислород. Состав содержит надпероксид натрия в количестве 32-38 мас.%, надпероксид калия в количестве...
Тип: Изобретение
Номер охранного документа: 0002377039
Дата охранного документа: 27.12.2009
18.05.2019
№219.017.59b1

Изолирующий дыхательный аппарат

Изобретение относится к изолирующим дыхательным аппаратам на химически связанном кислороде, предназначенным для защиты органов дыхания в аварийной ситуации. Изолирующий дыхательный аппарат содержит корпус 1 из полимерной пленки, в котором помещен регенеративный продукт 2 в виде армированных...
Тип: Изобретение
Номер охранного документа: 0002428231
Дата охранного документа: 10.09.2011
09.06.2019
№219.017.7d7a

Изолирующий дыхательный аппарат

Изолирующий дыхательный аппарат на химически связанном кислороде предназначен для защиты органов дыхания в аварийной ситуации. Изолирующий дыхательный аппарат содержит соединенный присоединительным патрубком (1) с узлом изоляции органов дыхания (2) в виде лицевой маски, оболочку (3) с...
Тип: Изобретение
Номер охранного документа: 0002428232
Дата охранного документа: 10.09.2011
19.06.2019
№219.017.86b5

Устройство для защиты органов дыхания

Изобретение относится к устройствам для защиты органов дыхания. Устройство для защиты органов дыхания содержит изготовленный из газонепроницаемого термостойкого гибкого материала и снабженный прозрачным участком в передней части колпак с шейным уплотнителем. Во внутренней полости колпака...
Тип: Изобретение
Номер охранного документа: 0002381043
Дата охранного документа: 10.02.2010
19.06.2019
№219.017.883d

Способ получения пероксида лития

Изобретение относится к способам получения пероксида лития. Способ включает взаимодействие гидроксида лития с пероксидом водорода при мольном соотношении гидроксид лития/пероксид водорода, равном LiOH/HО=1,74÷2, и температуре в зоне синтеза 25-35°С. Последующую дегидратацию продукта реакции...
Тип: Изобретение
Номер охранного документа: 0002322387
Дата охранного документа: 20.04.2008
19.06.2019
№219.017.89ff

Способ получения продукта для регенерации воздуха

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в и индивидуальных дыхательных аппаратах на химически связанном кислороде. Способ получения продукта для регенерации воздуха заключается во...
Тип: Изобретение
Номер охранного документа: 0002408403
Дата охранного документа: 10.01.2011
29.06.2019
№219.017.9d6e

Изолирующая дыхательная система

Изобретение относится к устройствам для защиты органов дыхания от ядовитых и вредных в герметичных и полугерметичных помещениях. Система содержит рециркуляционный контур очистки и вентиляции дыхательной газовой среды, модули индивидуального дыхания, источник кислорода и баллон-хранитель газовой...
Тип: Изобретение
Номер охранного документа: 0002352370
Дата охранного документа: 20.04.2009
+ добавить свой РИД