×
20.03.2019
219.016.e6a9

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ХРОМОНИКЕЛЕВОЙ ЛИСТОВОЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области прокатного производства и термической обработки. Для повышения уровня и стабильности механических свойств листов, их стойкости к ударно-импульсным нагрузкам высокой энергии, выхода годного нагрев плоских заготовок ведут до температуры аустенитизации, подвергают заготовки многопроходной реверсивной горячей прокатке с регламентированным обжатием по проходам, которую завершают при заданной температуре конца прокатки, выдерживают листы на воздухе и закаливают их в воде, причем продолжительность выдержки и температуру конца прокатки устанавливают в зависимости от содержания химических элементов в стали по соотношениям: Т≥850°С и τ≤30 с при 2·C+Ni+Cr=0,90-1,80; Т≥750°С и τ≤55 с при 2·C+Ni+Cr=1,81-3,40; Т≥700°С и τ≤65 с при 2·C+Ni+Cr=3,41-4,80, где Т - температура конца прокатки; τ - продолжительность выдержки перед закалкой; С, Ni, Cr - содержание в стали углерода, никеля и хрома соответственно, мас.%. При прокатке листов толщиной не более 7,0 мм относительное обжатие в каждом проходе поддерживают в пределах 30-50%. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области прокатного производства и термической обработки и может быть использовано при получении высокопрочной листовой стали специального и универсальных назначений, в том числе для бронезащитных конструкций.

Известен способ производства высокопрочной стали, включающий нагрев слябов до температуры аустенитизации 1000-1180°С, многопроходную горячую прокатку с температурой конца прокатки 950°С до конечной толщины. Горячекатаные листы затем нагревают со скоростью не менее 25°С/мин, закаливают водой и подвергают отпуску [1].

Недостатки известного способа состоят в том, что горячекатаная листовая хромоникелевая сталь после прокатки и закалки имеет низкие и неравномерные механические свойства, неудовлетворительно противостоит ударно-импульсным нагрузкам высокой энергии (УИНВЭ), которые возникают при тестовом обстреле образцов из стрелкового оружия.

Известен также способ производства высокопрочных стальных листов, включающий нагрев слябов до температуры аустенитизации, но не более 1150°С, и горячую прокатку за несколько проходов с суммарным обжатием не менее 30% и с температурой конца прокатки 900-950°С. Горячекатаные листы нагревают до температуры Ас3-100°С и закаливают, после чего подвергают отпуску при температуре 200-400°С и охлаждают водой [2].

Недостатки данного способа состоят в том, что готовые листы имеют недостаточную стойкость против УИНВЭ. Кроме того, изменение содержания химических элементов в стали оказывает существенное влияние на стабильность механических свойств.

Наиболее близким аналогом к предлагаемому изобретению является способ производства хромоникелевой листовой стали, включающий нагрев плоских заготовок (слябов) до температуры аустенитизации 1200-1300°С, многопроходную реверсивную горячую прокатку на толстолистовом стане 2800 до заданной толщины 20 мм, которую завершают при регламентированной температуре конца прокатки не выше 950°С и обжатии в последнем проходе не менее 15%, нагрев листов в роликовой закалочной печи до температуры не более 940°С и не менее 920°, закалку листов водой и высокий отпуск при температуре 590-640°С [3] - прототип.

Недостатки известного способа состоят в следующем. Листы после закалки и отпуска имеют низкие механические свойства, не выдерживают испытания УИНВЭ. Изменение содержания химических элементов в стали в пределах одной марки приводит к нестабильности механических свойств. При прокатке листов малых толщин (не более 7,0 мм), из-за ускоренного их охлаждения не достигается требуемая температура конца прокатки, что снижает выход годного. Кроме того, известный способ требует отдельного нагрева листов для их закалки и увеличенных энергозатрат.

Техническая задача, решаемая изобретением, состоит в повышении уровня и стабильности механических свойств листов, повышении их стойкости к ударно-импульсным нагрузкам высокой энергии и выхода годного. Помимо этого, имеет место снижение энергозатрат.

Для решения поставленной технической задачи в известном способе производства хромоникелевой листовой стали, включающем нагрев плоских заготовок до температуры аустенитизации, многопроходную реверсивную горячую прокатку, которую завершают при регламентированной температуре конца прокатки, и последующую закалку листов в воде, согласно предложению закалку листов производят после выдержки их на воздухе, причем продолжительность выдержки и температуру конца прокатки устанавливают в зависимости от содержания химических элементов в стали по соотношениям

Ткп≥850°С и τ≤30 с при 2·C+Ni+Cr=0,90-1,80;

Ткп≥750°С и τ≤55 с при 2·C+Ni+Cr=1,81-3,40;

Ткп≥700°С и τ≤65 с при 2·C+Ni+Cr=3,41-4,80,

где Ткп - температура конца прокатки;

τ - продолжительность выдержки перед закалкой;

τ - продолжительность выдержки перед закалкой;

С, Ni, Cr - содержание в стали углерода, никеля и хрома соответственно, мас.%.

Кроме того, при прокатке листов толщиной не более 7,0 мм относительное обжатие в каждом проходе поддерживают в пределах 30-50%.

Сущность изобретения состоит в следующем.

В процессе многопроходной реверсивной прокатки и выдержки на воздухе перед закалкой листов из хромоникелевых сталей с бронезащитными свойствами, (выдерживающими УИНВЭ), необходимо сформировать дислокационную и зеренную микроструктуру деформированного аустенита с получением при последующей закалке высокодисперсной микроструктуры мартенсита реечной морфологии, что повышает механические и бронезащитные свойства листов. Поскольку закалку производят при температуре, близкой к температуре конца прокатки, то эта температура должна превышать значений температуры критической точки Ar3 стали, которая, в свою очередь, снижается с повышением суммарного содержания углерода, хрома и никеля. Помимо этого, после окончания прокатки перед закалкой необходимо выдержать лист на воздухе для старта рекристаллизации и выравнивания формы деформированных аустенитных зерен. Падением температуры при этом можно пренебречь, зато зеренная структура аустенита после выдержки становится более равномерной, вытянутость зерен исчезает. Причем, поскольку скорость рекристаллизации снижается с уменьшением температуры листов, значения τ необходимо увеличивать по мере уменьшения Ткп. Благодаря этому повышается изотропность механических свойств закаленных листов, их стойкости к УИНВЭ, и, как следствие, возрастает выход годного.

Поэтому температуру конца прокатки и прдолжительность выдержки устанавливают по следующим соотношениям:

Ткп≥850°С и τ≤30 с при 2·C+Ni+Cr=0,90-1,80;

Ткп≥750°С и τ≤55 с при 2·C+Ni+Cr=1,81-3,40;

Ткп≥700°С и τ≤65 с при 2·C+Ni+Cr=3,41-4,80,

где Ткп - температура конца прокатки;

τ - продолжительность выдержки перед закалкой;

С, Ni, Cr - содержание в стали углерода, никеля и хрома соответственно, мас.%.

При выполнении указанных соотношений исключается необходимость проведения отдельного нагрева под закалку, повышается уровень механических свойств и стойкости против УИНВЭ за счет сохранения деформационной составляющей упрочнения, уменьшается влияние изменений химического состава стали стабильность свойств листов.

Горячая прокатка на реверсивном стане производится на сравнительно низких скоростях и для того, чтобы организовать деформационное циклирование с постоянным измельчением аустенитной структуры при прокатке листов толщиной не более 7,0 мм, обжатие за проход должно быть в пределах 30-50%. Тепло, в которое преобразуется работа деформации, обеспечивает уменьшение падения температуры тонкого листа, а повышенные разовые обжатия уменьшают необходимое число проходов, сокращают общее время прокатки и теплопотери. Благодаря этому, регламентированная температура конца прокатки будет всегда достижима и более стабильна.

Экспериментально установлено, что если:

Ткп<850°С и τ>30 с при 2·C+Ni+Cr=0,90-1,80%;

Ткп<750°С и τ>55 с при 2·C+Ni+Cr=1,81-3,40%;

Ткп<700°С и τ>65 с при 2·C+Ni+Cr=3,41-4,80%,

то температура Ткп окажется ниже температуры критической точки Ar3 для стали с конкретным содержанием 2·C+Ni+Cr. В этом случае последний проход при прокатке и закалка листов в воде будет проведена в двухфазной области. Это приведет к снижению стабильности и уровня механических свойств листов, а также к снижению их стойкости против УИНВЭ и выхода годного. Одновременно с этим, увеличение продолжительности выдержки τ приведет к укрупнению зерен микроструктуры, понижению механических свойств, что недопустимо.

Если при прокатке листов толщиной не более 7,0 мм относительное обжатие в каждом проходе будет менее 30%, то это уменьшит адиабатическое тепловыделение при прокатке и увеличит общее число проходов. В результате Ткп окажется ниже регламентированного значения. Это приведет к снижению механических свойств и выхода годных листов толщиной не более 7,0 мм. Увеличение относительного обжатия в каждом проходе более 50% приведет к потере плоскостности листов, формированию анизотропной микроструктуры. Следствием этого будет снижение стабильности и уровня механических свойств листов, их стойкости против УИНВЭ и выхода годного.

Примеры реализации способа

Для производства листов используют плоские заготовки из среднеуглеродистых хромоникелевых сталей, составы которых представлены в табл.1.

Таблица 1.
Химический состав сталей
Номер
состава
Содержание химических элементов, мас.%
СMnSiNiCr2·C+Ni+CrPS
1.0,130,300,270,200,100,700,0170,016
2.0,140,500,280,500,120,900,0150,014
3.0,210,550,320,600,331,350,0140,015
4.0,280,530,290,740,501,800,0160,017
5.0,190,510,331,000,431,810,0180,013
6.0,230,520,321,310,842,610,0130,018
7.0,420,500,291,501,063,400,0220,024
8.0,320,550,351,681,093,410,0230,026
9.0,420,530,221,841,434,110,0180,022
10.0,550,540,312,001,704,800,0220,025
11.0,250,580,272,921,484,900,1140,016
Примечание: стали всех составов содержат 0,2% молибдена

Пример 1. Плоские заготовки толщиной Н0=200 мм из стали составов 2, 3, 4 нагревают до температуры аустенитизации 1250°С и осуществляют их горячую прокатку на толстолистовом реверсивном стане кварто 2000 до конечной толщины H1=24 мм за 9 проходов. Поскольку для составов 2, 3, 4 выполняется соотношение 2·C+Ni+Cr=0,90-1,80%, прокатку листов завершают при температуре Ткп=870°С>850°С. Прокатанные листы после выдержки на воздухе в течение времени τ=20 с, в процессе которой листы транспортируют к закалочной машине, подвергают закалке водой от температуры конца прокатки Ткп=870°С.

Поскольку для указанного диапазона содержаний 2·C+Ni+Cr температура критической точки Ar3 ниже температуры конца прокатки - закалки, закаленные из однофазной области листы приобретают высокие и стабильные механические свойства, высокую стойкость против УИНВЭ и максимальный выход годного. Исключение необходимости подогрева листов перед закалкой обеспечивает снижение энергозатрат.

Пример 2. Плоские заготовки толщиной Н0=180 мм из сталей составов 5, 6, 7 нагревают до температуры аустенитизации 1250°С и осуществляют их горячую прокатку на толстолистовом реверсивном стане кварто 2000 до конечной толщины H1=14 мм за 7 проходов.

Поскольку для составов 5, 6, 7 выполняется соотношение 2·C+Ni+Cr=1,81-3,40%, прокатку листов завершают при температуре Ткп=770°С>750°С. Прокатанные листы после выдержки на воздухе в течение 45 с подвергают закалке водой от температуры конца прокатки Ткп=770°С. Повышение содержания 2·C+Ni+Cr до 1,81-3,40% снижает температуру критической точки Ar3, поэтому, несмотря на то, что температура закалки снизилась до 770°С, закалка производится из однофазной области γ-железа. Поэтому закаленные листы также приобретают высокие и стабильные механические свойства, высокую стойкость против УИНВЭ и максимальный выход годного. Исключение необходимости подогрева листов перед закалкой обеспечивает снижение энергозатрат.

Пример 3. Для прокатки листов толщиной H1=6,5 мм (т.е. менее 7,0 мм) используют плоские заготовки толщиной 140 мм.

Прокатку осуществляют с относительными обжатиями в каждом проходе ε=40% по схеме:

140 мм → 84 мм → 50,4 мм → 30,24 мм → 18,14 мм → 10,88 мм → 6,5 мм.

Поскольку при прокатке листов толщиной H1=6,5 мм на толстолистовом реверсивном стане падение температуры листов происходит интенсивно за счет теплоотдачи валкам и охлаждающей валки воде, то температура конца прокатки самопроизвольно снижается до Ткп=720°С. Для этого случая необходимо использовать заготовки из стали с содержанием 2·C+Ni+Cr=3,41-4,80%, что соответствует составам 8, 9, 10 таблицы 1, т.к. при указанном содержании химических элементов допускаемая температура Ткп≥700°С.

Прокатанные с Ткп=720°C листы толщиной H1=6,5 мм выдерживают на воздухе в течение времени τ=70 с, после чего закаливают водой.

Повышение содержания 2·C+Ni+Cr до 3,41-4,80% снижает температуру критической точки Ar3, поэтому, несмотря на то, что температура закалки снизилась за время выдержки τ до 710°С, закалка производится из однофазной области γ-железа. Поэтому закаленные листы также приобретают высокие и стабильные механические свойства, высокую стойкость против УИНВЭ и максимальный выход годного. Исключение необходимости подогрева листов перед закалкой обеспечивает снижение энергозатрат.

Варианты реализации предложенного способа и показатели их эффективности приведены в табл.2.

Из табл.2 следует, что при реализации предложенного способа (варианты №2, 3, 5, 6, 8, 9, 10) достигается повышение уровня и стабильности механических свойств листов, повышение их стойкости к ударно-импульсным нагрузкам высокой энергии и выхода годного.

В случае запредельных значений заявленных параметров (варианты №1, 4, 7, 11), а также способа-прототипа (вариант 12) снижается уровень и стабильность механических свойств листов различных толщин, листы не выдерживают испытания при ударно-импульсных нагрузках высокой энергии, поэтому имеют нулевой выход годного.

Технико-экономические преимущества предложенного способа состоят в том, что изменение температуры конца прокатки и, следовательно, температуры закалки, в зависимости от содержания в стали углерода, никеля и хрома, обеспечивает гарантированную закалку стали из однофазного состояния деформированного аустенита и формирования в результате закалки реечного мартенсита, имеющего наиболее высокую стойкость против УИНВЭ. Кроме того, при производстве листов толщиной не более 7,0 мм, которые интенсивно теряют температуру, обжатие в каждом проходе 30-50% позволяет минимизировать теплопотери, а выдержка их на воздухе перед закалкой в течение не более 65 с приводит к формированию равноосных зерен микроструктуры, что повышает изотропию механических свойств. Увеличение суммарного содержания 2·C+Ni+Cr до 2,41-4,80% позволяет максимально понизить критическую температуру Ar3 стали и производить ее закалку при более низких температурах из однофазной аустентной области.

Таблица 2.
Режимы производства листов из среднеуглеродистых хромоникелевых сталей и их эффективность
Технологические параметрыСвойства и выход годного
варианта№ состава2·C+Ni+Cr, %H1, ммε за проход, %Ткп, °Сτ, сσв, МПаδ5, %KCU, Дж/см2Испыт. УИНВЭВыход годного, %
1.10,7024,0не регл.8454011001085не выдерж.-
2.2, 3, 40,90-1,8024,0не регл.8503013451997выдержив.99,8
3.2, 3, 40,90-1,8024,0не регл.8702013501896выдержив.99,8
4.5, 6, 71,81-3,4014,0не регл.75055990978не выдерж.-
5.5, 6, 71,81-3,4014,0не регл.7704513501796выдержив.99,7
6.5, 6, 71,81-3,4014,0не регл7804013501896выдержив.99,9
7.8, 9, 103,41-4,807,02869065980762не выдерж.-
8.8, 9, 103,41-4,806,5307007013501896выдержив.99,7
9.8, 9, 103,41-4,805,0407108013451795выдержив.99,5
10.8, 9, 103,41-4,804,5507308213501896выдержив.99,3
11.112,61-3,555,252700649901377не выдерж.-
12.прототип2,120,020940-9501575не выдерж.-
Примечание: свойства листов при всех вариантах производства даны после низкотемпературного отпуска при 200°С

В качестве базового объекта при расчете эффективности предложенного способа принята технология производства листов из среднеуглеродистых хромоникелевых сталей на металлургическом предприятии «Красный Октябрь». Внедрение предложенного способа обеспечит повышение рентабельности производства листов специального и универсальных назначений на 20-25%.

Литературные источники, использованные при составлении описания изобретения:

1. Заявка №61-163210, Япония, МПК С21D 8/00, 1986 г.

2. Заявка №61-223125, Япония, МПК С21D 8/02, С22С 38/54, 1986 г.

3. Патент Российской Федерации №2191833, МПК С21D 8/02, 2002 г. - прототип.

Т≥850°Сиτ≤30спри2·C+Ni+Cr=0,90-1,80;Т≥750°Сиτ≤55спри2·C+Ni+Cr=1,81-3,40;Т≥700°Сиτ≤65спри2·C+Ni+Cr=3,41-4,80,гдеТ-температураконцапрокатки;τ-продолжительностьвыдержкипередзакалкой;С,Ni,Cr-содержаниевсталиуглерода,никеляихромасоответственно,мас.%.1.Способпроизводствахромоникелевойлистовойстали,включающийнагревплоскихзаготовокдотемпературыаустенитизации,многопроходнуюреверсивнуюгорячуюпрокаткусрегламентированнойтемпературойконцапрокаткиизакалкулистоввводе,отличающийсятем,чтопослегорячейпрокаткипроизводятвыдержкулистовнавоздухе,азатемосуществляютзакалку,причемпродолжительностьвыдержкилистовнавоздухеитемпературуконцапрокаткиустанавливаютвзависимостиотсодержанияхимическихэлементоввсталипосоотношениям12.Способпоп.1,отличающийсятем,чтоприпрокаткелистовтолщинойнеболее7,0ммотносительноеобжатиевкаждомпроходеподдерживаютвпределах30-50%.2
Источник поступления информации: Роспатент

Showing 51-60 of 88 items.
01.03.2019
№219.016.cc38

Способ производства штрипсов из низколегированной стали

Изобретение предназначено для снижения расходного коэффициента стали на толстолистовых реверсивных станах при контролируемой прокатке штрипсов. Способ включает нагрев заготовок, многопроходную черновую и чистовую прокатку на толстолистовом реверсивном стане с подстуживаним раскатов на воздухе...
Тип: Изобретение
Номер охранного документа: 0002353441
Дата охранного документа: 27.04.2009
01.03.2019
№219.016.cc50

Способ производства стальных горячекатаных полос

Изобретение относится к прокатному производству, конкретнее к горячей прокатке на непрерывных широкополосных станах полос, предназначенных для изготовления сварных труб и металлоконструкций. Способ включает нагрев слябов, горячую прокатку полос с регламентированной температурой конца прокатки,...
Тип: Изобретение
Номер охранного документа: 0002358022
Дата охранного документа: 10.06.2009
01.03.2019
№219.016.cc56

Способ производства штрипсов из низколегированной стали

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения штрипсов категории прочности Х80, используемых при строительстве магистральных нефтегазопроводов. Техническим результатом является повышение прочности, пластичности и...
Тип: Изобретение
Номер охранного документа: 0002358024
Дата охранного документа: 10.06.2009
01.03.2019
№219.016.ccd4

Сталь низколегированная свариваемая

Изобретение относится к области металлургии, а именно к низколегированным сталям, используемым для изготовления сварных нефте- и газопроводов, эксплуатируемых в условиях Крайнего Севера. Сталь содержит углерод, кремний, марганец, ванадий, ниобий, алюминий, титан, азот, хром, никель, медь, серу,...
Тип: Изобретение
Номер охранного документа: 0002335568
Дата охранного документа: 10.10.2008
01.03.2019
№219.016.ccda

Способ производства горячекатаных полос

Изобретение относится к прокатному производству, конкретнее к горячей прокатке полос на непрерывных широкополосных станах, и может быть использовано при изготовлении штрипсов для сварных водогазопроводных труб. Для повышения выхода годного при одновременном снижении концентрации марганца в...
Тип: Изобретение
Номер охранного документа: 0002337147
Дата охранного документа: 27.10.2008
01.03.2019
№219.016.cd46

Приемный участок холодильника сортового прокатного стана

Изобретение относится к прокатному производству, а именно к конструкциям приемного участка холодильника стального сортового проката. Приемный участок холодильника сортового прокатного стана содержит подводящий рольганг, систему приводных подъемных клапанов, расположенных вдоль оси рольганга,...
Тип: Изобретение
Номер охранного документа: 0002368444
Дата охранного документа: 27.09.2009
01.03.2019
№219.016.cef1

Способ производства стальных горячекатаных полос

Изобретение предназначено для получения горячекатаных полос с односторонним рифлением и без рифления на непрерывных широкополосных станах кварто горячей прокатки. Способ включает нагрев слябов, черновую прокатку и чистовую многопроходную прокатку в непрерывной группе клетей в полосы конечной...
Тип: Изобретение
Номер охранного документа: 0002455089
Дата охранного документа: 10.07.2012
01.03.2019
№219.016.d007

Способ горячей прокатки полос с односторонним рифлением

Изобретение предназначено для снижения расходного коэффициента рабочих валков и повышения качества стальных горячекатаных полос с ромбическим и чечевичным рифлением. Способ включает многопроходное обжатие полос с обжатием в заключительном проходе в рабочих валках, на поверхности бочки одного из...
Тип: Изобретение
Номер охранного документа: 0002445179
Дата охранного документа: 20.03.2012
17.03.2019
№219.016.e255

Водоизмещающее судно с устройством образования воздушных каверн на днище

Изобретение относится к водному транспорту, касается конструирования судов с устройством образования воздушных каверн на днище и может быть использовано при строительстве плоскодонных быстроходных, судов, катеров, спортивных лодок и т.п. Предложено водоизмещающее судно с устройством образования...
Тип: Изобретение
Номер охранного документа: 0002682125
Дата охранного документа: 14.03.2019
20.03.2019
№219.016.e885

Оловянистая бронза для расходуемых электродов машин электроразрядного текстурирования листопрокатных валков

Изобретение относится к металлургии и может быть использовано при изготовлении стержневых расходуемых электродов машин электроразрядного текстурирования листопрокатных валков. Бронза содержит, мас.%: олово 4,0-менее 6,0, фосфор 0,1-0,3, сурьма не более 0,002, кремний не более 0,002, железо не...
Тип: Изобретение
Номер охранного документа: 0002401315
Дата охранного документа: 10.10.2010
+ добавить свой РИД