×
20.03.2019
219.016.e333

Результат интеллектуальной деятельности: Средства распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам термостатирования космического аппарата (КА) при его различных (электрических, радиотехнических и др.) наземных испытаниях. Предлагаемые средства выполнены в виде модульной конструкции – панелей термостатирования, содержащих закрепленные на технологической оснастке (3) воздушные тракты, включающие коллекторы (2) и распределители (4) воздуха по поверхности (7) панельного КА. Входы (1) коллекторов (2) герметично соединены с установкой воздушного термостатирования (не показана), а выходы (5) - с входами распределителей (4), имеющих параллельные ответвления с соплами (6). Сопла снабжены съёмными дросселями для настройки расхода воздуха. При термостатировании КА некоторое число сопел (6) может быть закрыто крышками. Технический результат состоит в снижении требуемого расхода термостатирующего воздуха, а также в унификации средств его распределения и подачи на поверхность КА. 6 ил.

Изобретение относится к ракетно-космической технике, а именно к воздушному термостатированию панельных космических аппаратов (КА) при проведении наземной подготовки, сопряженной с работой тепловыделяющего оборудования. Изобретение может быть использовано при создании средств наземного термостатирования панельных КА в рамках организации рабочего места для наземных испытаний.

Известно устройство подачи термостатирующей среды в отсек ракеты-носителя [патент RU 2368548, опубл. 27.09.2009, Бюл. №27, МПК: B64G 1/50 (2006.01), B64G 1/48 (2006.01)], содержащее устройство (трубопровод) для подачи термостатирующей среды в отсек ракеты-носителя и устройство для формирования газодинамического потока (диффузор), являющийся сменным и связанный с оболочкой отсека с помощью разъемного соединения.

Недостаток известного устройства - подача воздуха на объект термостатирования осуществляется интегрально, то есть отсутствует возможность распределенной подачи термостатирующей среды (ТС) на различные зоны объекта. В соответствии с этим для обеспечения требуемых коэффициентов теплоотдачи в наиболее теплонагруженных зонах общий расход термостатирующей среды является изначально завышенным для менее теплонагруженных зон.

Задачей изобретения является создание средств распределения и подачи термостатирующего воздуха на поверхность КА при проведении наземных испытаний (далее устройство), обеспечивающих регулируемый перпендикулярный позонный обдув поверхности КА.

Техническими результатами изобретения являются:

- снижение требуемого расхода ТС для осуществления термостатирования КА;

- снижение стоимости и унификации средств распределения и подачи термостатирующего воздуха на поверхность КА при наземных испытаниях;

- возможность адаптации имеющейся конструкции панелей термостатирования под любой объект термостатирования за счет модульной конструкции предложенного устройства.

Технический результат достигается за счет того, что средства распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях, выполненные в виде модульной конструкции - панели термостатирования, включают устройство для подачи термостатирующего воздуха и устройство для формирования газодинамического потока, причем устройство для подачи термостатирующего воздуха выполнено в виде коллекторов с распределителями термостатирующего воздуха по поверхности панельного космического аппарата, при этом входы коллекторов герметично соединены воздуховодом с установкой воздушного термостатирования, а выходы - с входами упомянутых распределителей, имеющих параллельные между собой ответвления, в каждом из которых выполнено выходное отверстие, устройство для формирования газодинамического потока выполнено в виде сопел с расположенными в них съемными дросселями, причем сопла установлены в выходных отверстиях упомянутых распределителей перпендикулярно поверхности панельного космического аппарата, а коллекторы и распределители выполнены в виде гребенок и установлены перпендикулярно относительно друг друга, при этом часть выходов распределителей или выходов коллекторов может быть закрыта крышками.

Сущность изобретения заключается в следующем.

Конструктивно предложенное устройство выполнено в виде модульной конструкции - панели термостатирования. В устройство входят коллекторы с распределителями, выполненные в виде гребенок. Гребенка распределителя обеспечивает размещение выходных отверстий для термостатирующей среды в виде матричной структуры. Каждое выходное отверстие снабжается соплом с установленным в нем дросселем, формирующим необходимые газодинамические характеристики струи. Подача воздуха производится перпендикулярно поверхности КА. Регулируемость обеспечивается возможностью установки в каждое выходное отверстие дросселя заданного диаметра проходного сечения, изменяющей гидравлическое сопротивление канала. Распределение выходных отверстий по площади термостатируемой поверхности КА позволяет раздельную подачу воздуха на более нагруженные и менее нагруженные зоны. В качестве основного конструкционного материала коллекторов и распределителей используется полипропилен, являющийся радиопрозрачным неэкранирующим материалом.

Адаптация конструкции панелей термостатирования достигается благодаря модульности предложенного устройства, которая обусловлена разъемностью основных конструктивных элементов (коллекторов и распределителей) и возможностью оперативного изменения конструкции под конкретные требования объекта термостатирования путем изменения количества распределителей или закрытия крышками неиспользуемых соединений с распределителями.

Сущность изобретения поясняется чертежами (фиг. 1-5).

На фиг. 1 и 2 приведен пример компоновки средств распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях в виде панели термостатирования с размещенными на ней четырьмя коллекторами (в трехмерном и двумерном изображениях соответственно).

На фиг. 3 приведен единичный коллектор с возможностью установки четырех распределителей, распределители не показаны.

На фиг. 4 приведен единичный распределитель с возможностью установки трех сопел, сопла не показаны.

На фиг. 5 приведено единичное сопло.

На фиг. 6 представлена таблица, в которой приведены данные по средним температурам термостатируемой поверхности с учетом параметров подачи воздуха.

На фигурах 1-5 введены следующие обозначения:

1 - вход коллектора 2;

2 - коллектор;

3 - технологическая оснастка;

4 - распределитель;

5 - выход коллектора 2;

6 - сопло;

7 - термостатируемая поверхность;

8 - выходное отверстие распределителя 4;

9 - дроссель;

10 - ответвления распределителя 4.

Средства распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях выполнены в виде модульной конструкции - панелей термостатирования (фиг. 1, 2), представляющих собой закрепленные на технологической оснастке 3 тракты движения воздуха, образованные соединенными между собой коллекторами 2 и распределителями 4 термостатирующего воздуха по поверхности панельного космического аппарата (устройство для подачи термостатирующего воздуха). На каждой панели термостатирования расположено несколько коллекторов 2 (фиг. 2) с установленными на них распределителями 4 (фиг. 4). Входы 1 коллекторов 2 герметично соединены воздуховодом с установкой воздушного термостатирования (на фигурах не показаны), а выходы 5 - с входами распределителей 4, имеющих параллельные между собой ответвления 10, в каждом из которых выполнено выходное отверстие 8.

В состав средств распределения и подачи входит также устройство для формирования газодинамического потока, выполненное в виде сопел 6 с расположенными в них съемными дросселями 9 (фиг. 5), причем сопла установлены в выходных отверстиях 8 распределителей 4 перпендикулярно поверхности панельного космического аппарата, а коллекторы 2 и распределители 4 выполнены в виде гребенок и установлены перпендикулярно относительно друг друга.

Часть выходов распределителей 4, а также выходов коллекторов 2 может быть закрыта крышками (на фигурах не показаны).

Дроссели 9, увеличивая гидравлическое сопротивление сопел 6, перераспределяют расход через остальные сопла, относящиеся к одному коллектору 2.

Соединение конструктивных элементов между собой выполняется пайкой (для соединения элементов коллектора 2 и распределителя 4 между собой) или резьбовым соединением (для присоединения коллекторов 2, распределителей 4 и сопел 6 друг к другу).

Коллекторы 2 и распределители 4 изготавливаются из полипропиленовых труб и соединителей (тройников, муфт, уголков и т.д.) ТУ 2248-032-00284581-98, сопла 6 изготавливаются методом 3D печати.

Конкретное количество элементов (распределителей, подключаемых к одному коллектору, и сопел, относящихся к одному распределителю) определяется геометрией термостатируемой поверхности и технологической возможностью состыковки элементов, входящих в состав коллектора и распределителей.

Эксплуатация устройства осуществляется следующим образом.

1. Положение устройства в режиме хранения

В режиме хранения панель термостатирования находится в разобранном состоянии: коллекторы 2 с установленными на них распределителями 4 отсоединены от технологической оснастки 3, сопла 6 отсоединены, дроссели 9 сняты. Места установки сопел 6 на распределителях 4, входные соединения 1 коллекторов 2 закрыты пылевыми фильтрами из плотной ткани или полимерного материала.

2. Подготовка устройства к работе

При подготовке устройства к работе снимаются все пылевые фильтры, выходные отверстия 8 распределителей 4 снаряжаются соплами 6, не снаряженными дросселями 9. Коллекторы 2 устанавливаются на технологическую оснастку 3 и закрепляются штатным крепежом.

3. Настройка расходных характеристик

При помощи переносного устройства измерения скорости воздушного потока термоанемометрического типа (например, модели ТТМ-2-01 или ТТМ-2-02-1) определяются расходы из каждого из сопел 6. При избыточном расходе устанавливаются дроссели 9, начиная с сопел 6, ближайших к входному соединению 1 коллектора 2.

4. Процесс термостатирования

После достижения нужных расходных характеристик панель термостатирования устанавливается напротив изделия, к входам 1 коллекторов 2 подсоединяют воздуховоды от установки воздушного термостатирования. При подаче термостатирующего воздуха в каждый из коллекторов 2 панели термостатирования воздух распределяется по внутренней полости коллекторов 2 и распределителей 4 (через выходы коллектора 5), при этом распределяясь между ответвлениями распределителей 10, не закрытыми соплами 6, и подается на термостатируемую поверхность 7. Регулирование расхода воздуха, проходящего через каждое сопло 6, определяется его удаленностью от входа 1 коллектора 2 и сечением дросселей 9, установленных на все сопла 6, относящиеся к одному коллектору 2.

Промышленная применимость предлагаемого изобретения поясняется расчетами коэффициентов теплоотдачи при перпендикулярном обдуве плоской поверхности, а также результатами натурных испытаний экспериментального образца (таблиц сравнений результатов расчета и эмпирических данных).

Для моделирования процесса обдува плоской пластины с перпендикулярным направлением струи воздуха использовалось эмпирическое уравнение Шлюндера-Гнилинского для теплоотдачи в формируемой пристенной струе.

Общий вид уравнения Шлюндера-Гнилинского для одиночного круглого сопла:

где

2000≤Re≤400000;

, где

Nu - критерий Нуссельта;

Pr - критерий Прандтля;

r - удаленность от эпицентра попадания струи термостатирующего воздуха, м;

D - диаметр выходного сечения сопла, м;

H - расстояние от выходного сечения сопла до термостатируемой поверхности, м;

Re - критерий Рейнольдса.

Результатом расчета по уравнению (1) стало распределение локальных значений коэффициента теплоотдачи а по мере удаления от эпицентра попадания струи воздуха. Недостатком уравнения является его ограниченный диапазон применимости. Наивысших значений коэффициент теплоотдачи достигает в точке эпицентра, прямо напротив выходного сечения подачи воздуха. Определение коэффициента теплоотдачи в эпицентре струи может приблизительно быть рассчитано по формуле для лобовой точке при обтекании сферы:

где - критерий Нуссельта;

d - характерный размер, м;

λ - коэффициент теплопроводности, Вт/(м⋅К);

Pr - критерий Прандтля (для воздуха равен 0,71);

Re - критерий Рейнольдса.

Для определения промежуточных значений коэффициента теплоотдачи между точкой эпицентра зоны термостатирования и зонами, в которых коэффициент был рассчитан по уравнению 2, необходимо проведение аппроксимации. При рассмотрении различных вариантов по скорости струи и расстоянию от выходного сечения до термостатируемой поверхности была выбрана линейная комбинация степенной и показательной функций вида:

где y - значение коэффициента теплоотдачи, Вт/(м2⋅К);

х - расстояние от эпицентра до рассматриваемой точки, м;

А, В, С, D, E - константы аппроксимации, подбираемые для каждой конкретной струи.

В результате проведенных расчетов было получено распределение локальных значений коэффициента теплоотдачи а. Для определения средней температуры обдуваемой поверхности необходимо определение среднего по площади значения коэффициента теплоотдачи. Это значение определяется как:

где αср - средний по поверхности коэффициент теплоотдачи, Вт/(м2⋅К);

αi - коэффициент теплоотдачи на i-м шаге от эпицентра, Вт/(м2⋅К);

Fi - площадь участка, находящегося на i-м шаге от эпицентра, м2;

F - полная площадь рассматриваемой поверхности, м2.

Значение средней температуры рассматриваемой поверхности определяется как:

где Тср - средняя температура пластины, °С

В дополнение к расчету был проведен эксперимент по обдуву плоской нагреваемой пластины воздухом с использованием экспериментальной установки, представляющей собой единичный коллектор с установленными направляющими и соплами.

В качестве объекта обдува использовалась плоская трехслойная сотопанель с установленными на ней пленочными электронагревателями. Панель имела габариты 1000×720 мм, мощность электронагревателей при номинальном режиме питания (27 В) составила 243 Вт.

Было проведено два эксперимента:

- режим «рабочий обдув», характеризующийся сниженным напряжением питания электронагревателей (напряжение 21,5 В, мощность тепловыделения 154 Вт);

- режим «стрессовый обдув, соответствующий номинальному режиму питания электронагревателей (напряжение 27 В, мощность тепловыделения 243 Вт).

От источника воздуха на средства распределения и подачи подавался воздух с расходом 80 м3/ч и температурой 18°С.

По приведенной выше расчетной методике была определена средняя температура поверхности с учетом параметров подачи воздуха, характерных для эксперимента. Сравнение полученных данных приведено в таблице (фиг. 6).

В результате сравнения наблюдается положительный запас по температуре в сторону экспериментальных данных, что позволяет сделать вывод о допустимости использования предлагаемых средств распределения и подачи воздуха в реальных условиях наземных испытаний.

Средства распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях, выполненные в виде модульной конструкции - панели термостатирования, включающие устройство для подачи термостатирующего воздуха и устройство для формирования газодинамического потока, отличающиеся тем, что устройство для подачи термостатирующего воздуха выполнено в виде коллекторов с распределителями термостатирующего воздуха по поверхности панельного космического аппарата, при этом входы коллекторов герметично соединены воздуховодом с установкой воздушного термостатирования, а выходы - с входами упомянутых распределителей, имеющих параллельные между собой ответвления, в каждом из которых выполнено выходное отверстие, устройство для формирования газодинамического потока выполнено в виде сопел с расположенными в них съемными дросселями, причем сопла установлены в выходных отверстиях упомянутых распределителей перпендикулярно поверхности панельного космического аппарата, а коллекторы и распределители выполнены в виде гребенок и установлены перпендикулярно относительно друг друга, при этом часть выходов распределителей или выходов коллекторов может быть закрыта крышками.
Источник поступления информации: Роспатент

Showing 1-10 of 111 items.
19.01.2018
№218.016.00e2

Способ испытания пневмогидравлической системы

Изобретение относится к ракетно-космической технике и может быть применено в различных видах техники, где используется пневмогидравлическая система. Заявленный способ испытания пневмогидравлической системы включает подачу контрольного газа в пневмогидравлическую систему, контроль испытательного...
Тип: Изобретение
Номер охранного документа: 0002629697
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0105

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата (КА) относится к области дистанционного мониторинга природных и техногенных процессов. Способ наблюдения наземных объектов с движущегося по околокруговой орбите КА включает определение текущих...
Тип: Изобретение
Номер охранного документа: 0002629694
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.1dc2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает разворот СБ относительно направления на Солнце, измерение значений тока от СБ, сравнение измеренных значений тока с задаваемыми значениями и контроль...
Тип: Изобретение
Номер охранного документа: 0002640943
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1dd9

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с дополнительными придонными перегородками, заборным устройством, штангой датчика уровня криогенного топлива, маршевый двигатель. Криогенный бак окислителя снабжен каплеотражателем,...
Тип: Изобретение
Номер охранного документа: 0002640941
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.22c3

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в...
Тип: Изобретение
Номер охранного документа: 0002642166
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.2438

Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата

Предложенный способ относится к области дистанционного мониторинга природных процессов, в частности роста и движения ледников. Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите КА включает определение текущих параметров орбиты, съемку с КА ледника и...
Тип: Изобретение
Номер охранного документа: 0002642544
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2aa2

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий авиационной и ракетной техники. Электронасосный агрегат содержит корпус (1) и установленные в нем электродвигатель (4) и двухопорный полый вал (5) насоса с по крайней мере одним рабочим...
Тип: Изобретение
Номер охранного документа: 0002642877
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2bb6

Способ определения параметров движения наблюдаемого с космического аппарата ледника

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения параметров движения фронтальной части ледника. Сущность: с космического аппарата выполняют съемку ледника и неподвижных характерных наземных точек в моменты, взятые...
Тип: Изобретение
Номер охранного документа: 0002643224
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.3b52

Протяженная рукоятка многофункционального инструмента для использования в условиях невесомости

Изобретение относится к космической технике, в частности к средствам фиксации в условиях невесомости элементов предметной среды, особенно инструментов. Протяженная рукоятка многофункционального инструмента для использования в условиях невесомости выполнена с продольным сквозным пазом. В пазу...
Тип: Изобретение
Номер охранного документа: 0002647427
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3c0c

Способ управления стационарным плазменным двигателем

Изобретение относится к исследованию и эксплуатации электроракетных стационарных плазменных двигателей. В способе, включающем запуск двигателя, сравнение измеренных значений разрядного тока с верхним допустимым его значением, и в случае превышения предельного значения выключение двигателя с...
Тип: Изобретение
Номер охранного документа: 0002647749
Дата охранного документа: 19.03.2018
Showing 1-10 of 11 items.
10.10.2013
№216.012.725c

Система термостатирования оборудования космического объекта

Изобретение относится к системам термостатирования (СТС) энергоемкого оборудования космических объектов (КО). СТС содержит две двухполостные жидкостные термоплаты (22), на которые устанавливается оборудование. Термоплаты размещены в приборной зоне обитаемого отсека (1). Внешний радиатор (12)...
Тип: Изобретение
Номер охранного документа: 0002494933
Дата охранного документа: 10.10.2013
20.04.2015
№216.013.41b2

Система терморегулирования стыковочного модуля обитаемой орбитальной станции

Изобретение предназначено для терморегулирования модулей долговременных орбитальных станций. Система терморегулирования содержит средства теплопереноса, электронагреватели со средствами управления и датчиковую аппаратуру на внутренней поверхности корпуса модуля. Средствами теплопереноса служат...
Тип: Изобретение
Номер охранного документа: 0002548316
Дата охранного документа: 20.04.2015
27.05.2015
№216.013.4e89

Способ пластического замещения дефектов кожи лоскутами с удаленной области у детей

Изобретение относится к медицине, а именно к пластической хирургии. Способ включает подготовку донорского лоскута путем экспандерного растяжения покровных тканей, его мобилизацию с сохранением питающей ножки и перемещение с закрытием области раневого дефекта. При этом лоскут формируют в...
Тип: Изобретение
Номер охранного документа: 0002551623
Дата охранного документа: 27.05.2015
10.04.2016
№216.015.2caa

Электропривод постоянного тока

Изобретение относится к области электротехники и может быть использовано в системах широкого класса изделий в качестве электропривода постоянного тока при автономном источнике электроэнергии ограниченной мощности, например, в служебных системах космических аппаратов. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002579153
Дата охранного документа: 10.04.2016
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
16.06.2018
№218.016.6399

Способ воздушного термостатирования отсеков космического аппарата при наземных испытаниях и устройство для его осуществления

Группа изобретений относится к оборудованию для наземных испытаний объектов ракетно-космической техники. Способ воздушного термостатирования отсеков космического аппарата (КА) включает нагнетание воздуха из окружающей среды, его охлаждение, осушку, нагревание и подачу в термостатируемый отсек...
Тип: Изобретение
Номер охранного документа: 0002657603
Дата охранного документа: 14.06.2018
20.06.2019
№219.017.8cf8

Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки

Изобретение относится к парокомпрессионным холодильным установкам и может быть использовано для регулирования температуры жидкого хладоносителя в различных технологических процессах. Заявлен способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной...
Тип: Изобретение
Номер охранного документа: 0002691777
Дата охранного документа: 18.06.2019
11.07.2020
№220.018.3162

Способ изготовления гибких нагревостойких электронагревателей

Изобретение относится к технологии изготовления гибких электрических нагревателей, которые могут использоваться в системах обеспечения теплового режима широкого класса изделий в широком диапазоне температур, в том числе, в приборостроении для транспорта и приборов авиационных и космических...
Тип: Изобретение
Номер охранного документа: 0002726182
Дата охранного документа: 09.07.2020
20.04.2023
№223.018.4b43

Устройство и способ измерения плотности падающих тепловых потоков при тепловакуумных испытаниях космических аппаратов

Устройство и способ для измерения плотности падающих тепловых потоков при наземных тепловакуумных испытаниях космических аппаратов относятся к космической технике, а именно к контролю теплового режима космического аппарата под воздействием окружающей среды, имитирующей космическое пространство....
Тип: Изобретение
Номер охранного документа: 0002773268
Дата охранного документа: 01.06.2022
21.04.2023
№223.018.4f9a

Регулятор потока шланговый

Изобретение относится к нефтяной и газовой промышленности и предназначено для дистанционного перекрытия и плавного (бесступенчатого) регулирования давления или расхода потоков жидких и газообразных сред, в том числе абразивсодержащих и взрывоопасных. Регулятор потока шланговый содержит полый...
Тип: Изобретение
Номер охранного документа: 0002792938
Дата охранного документа: 28.03.2023
+ добавить свой РИД