×
20.03.2019
219.016.e305

Результат интеллектуальной деятельности: Способ производства жаропрочных сплавов на основе никеля (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при изготовлении лопаток, дисков, створок и других деталей газотурбинных двигателей. Способ производства жаропрочных сплавов на основе никеля включает расплавление в вакууме шихтовых материалов, проведение, вакуумную высокотемпературную обработку расплава при давлении 10-10 мм рт.ст. и температуре 1600-1750°С в течение не менее 3 мин, введение в него рафинирующих добавок и фильтрацию расплава через нагретый пенокерамический фильтр. В качестве рафинирующих добавок в расплав вводят один или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 мин после введения каждого металла, после чего вводят один или более редкоземельных металлов в количестве 0,01-0,3% от массы расплава, причем не более 0,1% каждого. При необходимости после расплавления в вакууме шихтовых углеродсодержащих материалов проводят обезуглероживающее рафинирование расплава. Снижается содержание кислорода и азота, а также щелочноземельных металлов. Повышается длительная прочность как безуглеродистых, так и содержащих углерод жаропрочных сплавов на основе никеля. Также повышается выход годного по монокристальности для литейных монокристаллических жаропрочных сплавов на основе никеля. 2 н. и 10 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, в том числе коррозионностойких, как безуглеродистых, так и содержащих углерод, которые могут быть использованы для изготовления лопаток, дисков, створок и других деталей газотурбинных двигателей.

Для получения высококачественных бездефектных деталей двигателя необходимо применение жаропрочных материалов с ультравысокой чистотой по вредным примесям, в частности по сере, кислороду и азоту. Это обусловлено тем, что данные примеси образуют с компонентами сплавов неметаллические включения, например, сульфиды, оксиды, нитриды, которые являются концентраторами напряжений, инициирующими зарождение трещин при эксплуатации деталей, и ухудшают механические свойства жаропрочных литейных и деформируемых сплавов, такие как длительная прочность, пластичность и усталость. При направленной кристаллизации деталей с монокристаллической структурой из жаропрочных сплавов на основе никеля неметаллические включения могут являться источниками гетерогенного зарождения «паразитных» зерен, закрывать каналы дендритов и снижать жидкотекучесть кристаллизующейся в последнюю очередь жидкости, вызывая появление микропористости и существенно снижая выход годного, а также уровень и стабильность их эксплуатационных свойств.

Для снижения содержания примесей серы, кислорода и азота в расплав при выплавке вводят рафинирующие добавки - щелочноземельные (ЩЗМ) и редкоземельные (РЗМ) металлы. При использовании в производстве жаропрочных сплавов на основе никеля отходов (головные и донные части слитков, отходы литейного производства: части литниковых и питательных систем, отходы производства деформируемых сплавов: обрезь со штамповочными дефектами, бракованные детали, детали, отработавшие свой ресурс и др.), имеющих повышенную загрязненность примесями, количество вводимых рафинирующих добавок увеличивают. Между тем, температуры плавления рафинирующих добавок, особенно ЩЗМ, значительно ниже рабочих температур жаропрочных сплавов на основе никеля, следовательно, повышенное остаточное содержание этих металлов в сплаве может привести к снижению его жаропрочности. Для получения стабильно высоких механических и эксплуатационных свойств жаропрочных сплавов на основе никеля содержание РЗМ в них должно находиться на оптимальном уровне, поскольку повышенное содержание этих металлов может привести к образованию нежелательных фаз и отрицательно повлиять на выход годного при литье монокристаллов из данных сплавов. Следовательно, при выборе количества рафинирующих добавок при выплавке жаропрочных сплавов на основе никеля следует учитывать не только обеспечение высокой чистоты по вредным примесям, но и достижение оптимального содержания РЗМ в отливке, а также минимизацию остаточного содержания ЩЗМ.

Известен способ получения литейных жаропрочных сплавов на основе никеля, включающий загрузку и расплавление отходов литейного производства сплавов на основе никеля, рафинирование отходов в вакууме и введение РЗМ. Рафинирование отходов осуществляют в вакууме 3⋅10-2-10-3 при температуре расплава 1500-1700° в течение 2-8 минут, а РЗМ вводят в количестве 0,015-0,2% от массы отходов (RU 2190680 С1, 10.10.2002).

Данный способ не обеспечивает глубокого рафинирования расплава от серы и кислорода, поскольку включает только вакуумное рафинирование и введение РЗМ (без ЩЗМ).

Известен способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме чистых шихтовых материалов, обезуглероживающее рафинирование с введением окислителя в атмосфере инертного газа и последующее введение в вакууме хрома, активных легирующих элементов, РЗМ и рафинирование кальцием (RU 2310004 С2, 10.11.2007).

Данный способ не позволяет получить в сплаве требуемое ультранизкое содержание азота и кислорода, поскольку не включает вакуумную высокотемпературную обработку расплава, не обеспечивает минимизацию содержания кальция и не позволяет повысить уровень механических свойств.

Известен способ получения жаропрочных сплавов на основе никеля с ультранизким содержанием серы, который включает плавление в тигле шихты в виде чистых шихтовых материалов, либо в виде отходов или смеси отходов и чистых шихтовых материалов, введение в шихту до или после образования расплава рафинирующей добавки (оксидов кальция и магния) в виде десульфурирующего вещества, разливку расплава через фильтр в оболочковую форму для кристаллизации в виде отливок (US 5922148 А, 13.07.1999).

Использование в качестве рафинирующей добавки оксидов кальция и магния и отсутствие высокотемпературной обработки расплава не обеспечивают получение в сплаве ультранизкого содержания кислорода и азота и минимизацию содержания ЩЗМ, что не позволяет повысить длительную прочность жаропрочных сплавов на основе никеля.

Известен способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в две стадии с введением окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст. и последующим введением в вакууме редкоземельных металлов, хрома и активных легирующих элементов, при этом после введения в расплав активных легирующих элементов вводят кальций в количестве 0,02-0,20% от массы расплава под давлением инертного газа 20-130 мм рт.ст., затем создают вакуум, после чего вводят лантан (RU 2221067 С1, 10.01.2004).

Данный способ не обеспечивает получение в сплаве ультранизкого содержания примесей азота и кислорода, поскольку не включает высокотемпературную обработку расплава в вакууме, не обеспечивает минимизацию содержания ЩЗМ и не позволяет существенно повысить длительную прочность сплавов.

Известен способ получения литейных жаропрочных сплавов на основе никеля, включающий загрузку и расплавление отходов литейного производства никелевых сплавов, рафинирование отходов в вакууме, введение РЗМ, при этом рафинирование отходов осуществляют в вакууме 3⋅10-2-10-3 мм рт.ст. при температуре расплава 1500-1700°С в течение 2-8 мин, а РЗМ вводят в количестве 0,015-0,20% от массы отходов (RU 2190680 С1, 10.10.2002).

Данный способ не предусматривает введение щелочноземельных металлов и, следовательно, не может обеспечить ультранизкое содержание примесей в сплавах и не позволяет повысить их длительную прочность.

Наиболее близким аналогом предлагаемого способа производства безуглеродистых жаропрочных сплавов на основе никеля является способ, включающий расплавление в вакууме углеродсодержащих шихтовых материалов, проведение обезуглероживающего рафинирования расплава, введение отходов безуглеродистых литейных жаропрочных сплавов на основе никеля, введение активных легирующих элементов и рафинирующих добавок, отличающийся тем, что в качестве рафинирующих добавок в расплав вводят кальций и/или магний в количестве 0,001-0,10% от массы расплава в виде гранул кальций- или магнийсодержащей лигатуры в вакууме 1×10-2-5×10-4 мм рт.ст., затем в расплав вводят один или более редкоземельных металлов в виде никель - или кобальтсодержащей лигатуры, включающей редкоземельные металлы, после чего производят фильтрацию расплава через нагретый пенокерамический фильтр (RU 2541330 С1, пункт 1 формулы изобретения, 10.02.2015).

Наиболее близким аналогом предлагаемого способа производства жаропрочных сплавов на основе никеля (как углеродсодержащих, так и безуглеродистых) является способ, включающий расплавление в вакууме углеродсодержащих шихтовых материалов, введение отходов литейных жаропрочных сплавов на основе никеля, введение активных легирующих элементов и рафинирующих добавок, отличающийся тем, что в качестве рафинирующих добавок в расплав вводят кальций и/или магний в количестве 0,001-0,10% от массы расплава в виде гранул кальций-или магнийсодержащей лигатуры в вакууме 1×10-2-5×10-4 мм рт.ст., затем в расплав вводят один или более редкоземельных металлов в виде никель-или кобальтсодержащей лигатуры, включающей редкоземельные металлы, после чего производят фильтрацию расплава через нагретый пенокерамический фильтр (RU 2541330 С1, пункт 4 формулы изобретения, 10.02.2015). РЗМ вводят в расплав в количестве 0,01-0,50% от массы расплава (RU 2541330 С1, п.п. 2, 5 формулы изобретения).

Недостатками данных способов являются:

- отсутствие вакуумной высокотемпературной обработки расплава, способствующей его эффективной дегазации и удалению примесей азота и кислорода;

- применение в качестве рафинирующих добавок кальция и/или магния, которые вводят без учета их склонности к испарению в вакууме, что не обеспечивает высокой эффективности рафинирующего эффекта, достижения минимальных остаточных содержаний данных ЩЗМ и, соответственно, не приводит к повышению длительной прочности сплавов и выхода годного при литье монокристаллов из жаропрочных сплавов на основе никеля.

Общий недостаток известных способов заключается в несоблюдении оптимального содержания РЗМ в полученных сплавах. Способы, не предусматривающие введение РЗМ, либо предусматривающие введение небольшого количества в сплавы, не обеспечивают получение низких содержаний примесей, что приводит к снижению длительной прочности. Для снижения содержания примесей в расплав вводят РЗМ в количестве, которое в ряде случаев может оказаться избыточным, что также приводит к снижению длительной прочности.

Техническим результатом предлагаемой группы изобретений является снижение содержания кислорода и азота, а также щелочноземельных металлов, и повышение длительной прочности как безуглеродистых, так и содержащих углерод жаропрочных сплавов на основе никеля. Техническим результатом также является повышение выхода годного по монокристальности для литейных монокристаллических жаропрочных сплавов на основе никеля.

Технический результат достигается предложенным способом производства жаропрочных сплавов на основе никеля, включающим расплавление в вакууме углеродсодержащих шихтовых материалов, проведение обезуглероживающего рафинирования расплава, введение в него рафинирующих добавок и фильтрацию расплава через нагретый пенокерамический фильтр, при этом после проведения обезуглероживающего рафинирования расплава проводят вакуумную высокотемпературную обработку расплава при давлении 10-2-10-4 мм рт. ст. и температуре 1600-1750°С в течение не менее 3 минут, в качестве рафинирующих добавок в расплав вводят один или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 минут после введения каждого металла, после чего вводят один или более редкоземельных металлов в количестве 0,01-0,3% от массы расплава, но не более 0,1% каждого.

В качестве углеродсодержащих шихтовых материалов допускается использование отходов углеродсодержащих жаропрочных сплавов на основе никеля в количестве до 100% металлошихты.

В случае использования отходов безуглеродистых жаропрочных сплавов на основе никеля и активных легирующих элементов, их вводят после проведения обезуглероживающего рафинирования расплава, а вакуумную высокотемпературную обработку расплава проводят до или после введения активных легирующих элементов.

Обезуглероживающее рафинирование расплава предпочтительно проводить в атмосфере инертного газа при давлении 10-400 мм рт. ст.

В расплав вводят один или более редкоземельных металлов из группы: иттрий, лантан, диспрозий, празеодим, неодим, эрбий, церий, скандий, самарий, гадолиний.

Щелочноземельные и редкоземельные металлы допускается вводить в расплав в виде бинарных сплавов с металлами, входящими в состав сплава.

Для достижения технического результата также предложен способ производства жаропрочных сплавов на основе никеля, включающий расплавление в вакууме шихтовых материалов, введение рафинирующих добавок и фильтрацию расплава через нагретый пенокерамический фильтр, при этом после расплавления в вакууме шихтовых материалов проводят вакуумную высокотемпературную обработку расплава при давлении 10-2-10-4 мм рт. ст. и температуре 1600-1750°С в течение не менее 3 минут, в качестве рафинирующих добавок в расплав вводят один или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 минут после введения каждого металла, после чего вводят один или более редкоземельных металлов в количестве 0,01-0,3% от массы расплава, но не более 0,1% каждого.

В качестве шихтовых материалов допускается использование отходов жаропрочных сплавов на основе никеля в количестве до 100% металлошихты.

В случае использования активных легирующих элементов, их вводят в расплав после расплавления в вакууме шихтовых материалов, а вакуумную высокотемпературную обработку расплава проводят до или после введения активных легирующих элементов.

Щелочноземельные и редкоземельные металлы допускается вводить в расплав в виде бинарных сплавов с металлами, входящими в состав сплава.

В расплав вводят один или несколько редкоземельных металлов из группы: иттрий, лантан, диспрозий, празеодим, неодим, эрбий, церий, скандий, самарий, гадолиний.

Предлагаемые способы предусматривают получение жаропрочных сплавов на основе никеля как безуглеродистых, так и содержащих углерод. При получении безуглеродистых сплавов проводят обезуглероживающее рафинирование расплава. Способом без обезуглероживающего рафинирования расплава могут быть получены сплавы как содержащие углерод, так не содержащие (в случае использования безуглеродистых шихтовых материалов).

Проведение вакуумной высокотемпературной обработки расплава при давлении 10-2-10-4 мм рт.ст. и температуре 1600-1750°С в течение не менее 3 минут обеспечивает глубокую очистку расплава от примесей кислорода и азота, поскольку во время нее происходит ускорение диффузионных процессов в расплаве, а за счет пониженного давления осуществляется его дегазация.

Установлено, что высокотемпературная обработка, введение в качестве рафинирующих добавок в расплав одного или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 минут после введения каждого металла, с последующим введением одного или нескольких редкоземельных металлов в заданных количествах позволяет обеспечить минимизацию остаточного содержания щелочноземельных металлов и глубокую очистку расплава от примесей серы, кислорода и азота.

Введение в расплав в качестве рафинирующих добавок одного или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 минут после введения каждого металла, способствует удалению из расплава серы и кислорода. Последовательность их введения обусловлена значением давления упругости насыщенного пара, а, следовательно, склонности к испарению в вакууме каждого из данных щелочноземельных металлов. Наименее склонен к испарению в вакууме барий, поэтому его вводят первым, за счет чего увеличивается время его нахождения в расплаве. Наиболее склонен к испарению магний, поэтому его вводят в последнюю очередь - после кальция. Соблюдение данного порядка введения рафинирующих добавок, либо введение одной из добавок обеспечивает:

- эффективное раскисление расплава и удаление из него серы,

- получение низкого остаточного содержания легкоплавких щелочноземельных металлов в готовом сплаве, что оказывает положительное влияние на его жаропрочность,

- высокую стабильность усвоения РЗМ за счет предварительного рафинирования расплава от примесей серы, кислорода и азота, включающего вакуумную высокотемпературную обработку расплава и последовательное введение щелочноземельных металлов, что позволяет регламентировать количество вводимых РЗМ в пределах 0,01-0,3% от массы расплава, но не более 0,1% каждого. Это, в свою очередь, позволяет избежать возможного переизбытка РЗМ в получаемых сплавах, приводящего к снижению длительной прочности.

Проведение обезуглероживающего рафинирования в атмосфере инертного газа при давлении 10-400 мм рт.ст. позволяет обеспечивать снижение примеси углерода в расплаве за счет его окисления и удаления в газообразном виде. Давление инертного газа в камере печи в указанном диапазоне улучшает усвоение кислородосодержащей обезуглероживающей присадки (например, закиси никеля NiO) и более полного прохождения процесса обезуглероживания.

Примеры осуществления изобретения.

Примеры 1-5.

Предлагаемым способом осуществляли выплавку литейного безуглеродистого монокристаллического жаропрочного сплава на основе никеля системы Ni-Cr-Co-W-Ti-Al-Nb-Mo. Всего было выполнено 5 плавок. Плавки проводили в вакуумной индукционной печи. Масса шихты в тигле составляла 20 кг. В тигель загружали углеродсодержащие шихтовые материалы: никель, кобальт, вольфрам, молибден. На 1-й плавке использовали только свежие шихтовые материалы, на 2-й плавке использовали отходы безуглеродистого жаропрочного сплава на основе никеля в количестве 10% от массы плавки, на 3-й - 50%, на 4-й - 70%, на 5-й плавке - 100% отходов углеродсодержащего жаропрочного сплава, т.е. без применения свежих шихтовых материалов.

После расплавления шихты в вакууме на всех плавках провели обезуглероживающее рафинирование расплава при давлении:

на 1-й плавке - 10 мм рт.ст.;

на 2-й плавке - 100 мм рт.ст.;

на 3-й плавке - 200 мм рт.ст.;

на 4-й плавке - 300 мм рт.ст;

на 5-й плавке - 400 мм рт.ст.

Далее последовательно ввели отходы выплавляемого сплава (на 2-й, 3-й и 4-й плавках) и активные легирующие элементы - хром, ниобий, титан, алюминий (на 1-й, 2-й, 3-й и 4-й плавках).

Высокотемпературную обработку на 1-й и 2-й плавках проводили до введения активных легирующих элементов, на 3-й и 4-й - после введения активных легирующих элементов, на 5-ой плавке - после проведения обезуглероживающего рафинирования, по следующему режиму:

на 1-й плавке при давлении (1-5)×10-2 мм рт.ст. и температуре 1600-1630°С в течение 15 минут;

на 2-й плавке при давлении (5-9)×10-3 мм рт.ст. и температуре 1630-1660°С в течение 10 минут;

на 3-й плавке при давлении (1-5)×10-3 мм рт.ст. и температуре 1660-1690°С в течение 7 минут;

на 4-й плавке при давлении (5-9)×10-4 мм рт.ст. и температуре 1690-1720°С в течение 5 минут;

на 5-й плавке при давлении (1-5)×10-4 мм рт.ст. и температуре 1720-1750°С в течение 3 минут.

Далее на 1-й, 2-й и 3-й плавках в расплав ввели последовательно барий в виде лигатуры алюминий-барий, кальций и магний в виде лигатур с никелем:

на 1-й плавке - по 0,005% от массы расплава каждого с выдержкой 2 мин;

на 2-й - по 0,010% от массы расплава каждого с выдержкой 2,5 мин;

на 3-й - по 0,015% от массы расплава каждого с выдержкой 3 мин.

На 4-й плавке в расплав ввели последовательно барий в виде лигатуры алюминий-барий и кальций в виде лигатуры с никелем - по 0,020% от массы расплава каждого с выдержкой 3,5 мин;

На 5-й плавке в расплав ввели барий в виде лигатуры алюминий-барий в количестве 0,025% от массы расплава с выдержкой 4 мин.

Затем в расплав ввели редкоземельные металлы в виде лигатур с никелем:

на 1-й плавке - 0,05% церия, 0,05% иттрия, 0,05% лантана, 0,05% празеодима, 0,05% неодима, 0,05% скандия;

на 2-й - 0,100% церия, 0,025% иттрия, 0,025% эрбия, 0,025% самария, 0,025% гадолиния;

на 3-й - 0,025% церия, 0,025% иттрия, 0,025% диспрозия, 0,025% празеодима;

на 4-й - 0,015% церия, 0,015% иттрия, 0,020% лантана;

на 5-й - 0,01% церия.

После этого приступили к разливке расплава в стальную трубу через керамическую воронку с установленным пенокерамическим фильтром.

Содержание серы определяли на газоанализаторе CS-600 фирмы «Leco» по ГОСТ 24018.8, содержание кислорода и азота на газоанализаторе ТСН600 фирмы «Leco» по ГОСТ 17745, содержания РЗМ - масс-спектрометрическим методом на установке iCAPQ фирмы «Thermo Fisher Scientific)) в соответствии с МИ 1.2.054-2013.

Из полученных сплавов были отлиты заготовки с монокристаллической структурой с кристаллографической ориентацией 001, из которых изготовили образцы для испытаний на длительную прочность на машине ZST2/3-ВИЭТ фирмы «Schenck» в соответствии с ГОСТ 10145.

Количество вводимых в расплав компонентов и свойства полученных отливок приведены в таблице 1.

Из таблицы 1 видно, что в сплаве, выплавленном способом-прототипом, содержание примесей кислорода и азота выше, чем в сплаве, выплавленном предложенным способом.

В отливках, полученных предложенным способом, остаточное содержание щелочноземельных и редкоземельных металлов ниже, а длительная прочность увеличилась в среднем на 53,3% на базе 100 ч и 47,3% на базе 1000 ч. Выход годного по монокристальности для выплавляемого монокристаллического жаропрочного сплава в среднем выше на 9,2%.

Примеры 6-10.

Предлагаемым способом осуществляли выплавку литейного жаропрочного сплава на основе никеля системы Ni-Cr-Co-W-Ti-Al-Nb-Mo-C. Всего было выполнено 5 плавок. Плавки проводили в вакуумной индукционной печи. Масса шихты в тигле составляла 20 кг. В тигель загружали углеродсодержащие шихтовые материалы: никель, кобальт, вольфрам, молибден. На 1-й плавке использовали только свежие шихтовые материалы, на 2-й плавке использовали отходы в количестве 10% от массы плавки, на 3-й - 50%, на 4-й - 70%, на 5-й - 100%, т.е. без применения свежих шихтовых материалов.

Высокотемпературную обработку на 1-й и 2-й плавках проводили до введения активных легирующих элементов, на 3-й и 4-й - после введения активных легирующих элементов, на 5-й плавке - после расплавления в вакууме шихтовых материалов, по следующему режиму:

на 1-й плавке при давлении (1-5)×10-2 мм рт.ст. и температуре 1600-1630°С в течение 15 минут;

на 2-й плавке при давлении (5-9)×10-3 мм рт.ст. и температуре 1630-1660°С в течение 10 минут;

на 3-й плавке при давлении (1-5)×10-3 мм рт.ст. и температуре 1660-1690°С в течение 7 минут;

на 4-й плавке при давлении (5-9)×10-4 мм рт.ст. и температуре 1690-1720°С в течение 5 минут;

на 5-й плавке при давлении (1-5)×10-4 мм рт.ст. и температуре 1720-1750°С в течение 3 минут.

Далее на 1-й, 2-й и 3-й плавках в расплав ввели последовательно барий в виде лигатуры алюминий-барий, кальций и магний в виде лигатур с никелем:

на 1-й плавке - по 0,005% от массы расплава каждого с выдержкой 2 мин;

на 2-й - по 0,010% от массы расплава каждого с выдержкой 2,5 мин;

на 3-й - по 0,015% от массы расплава каждого с выдержкой 3 мин.

На 4-й плавке в расплав ввели последовательно барий в виде лигатуры алюминий-барий и кальций в виде лигатуры с никелем - по 0,020% от массы расплава каждого с выдержкой 3,5 мин;

На 5-й плавке в расплав ввели барий в виде лигатуры алюминий-барий в количестве 0,025% от массы расплава с выдержкой 4 мин.

Затем в расплав ввели редкоземельные металлы в виде лигатур с никелем:

на 1-й плавке - 0,05% церия, 0,05% иттрия, 0,05% лантана, 0,05% празеодима, 0,05% неодима, 0,05% скандия;

на 2-й - 0,100% церия, 0,025% иттрия, 0,025% эрбия, 0,025% самария, 0,025% гадолиния;

на 3-й - 0,025% церия, 0,025% иттрия, 0,025% диспрозия, 0,025% празеодима;

на 4-й - 0,015% церия, 0,015% иттрия, 0,020% лантана;

на 5-й - 0,01% церия.

После этого приступили к разливке расплава в стальную трубу через керамическую воронку с установленным пенокерамическим фильтром.

Содержание серы определяли на газоанализаторе CS-600 фирмы «Leco» по ГОСТ 24018.8, содержание кислорода и азота на газоанализаторе ТСН600 фирмы «Leco» по ГОСТ 17745, содержания РЗМ масс-спектрометрическим методом на установке iCAPQ фирмы «Thermo Fisher Scientific)) в соответствии с МИ 1.2.054-2013.

Количество вводимых в расплав щелочноземельных и редкоземельных металлов и свойства полученных отливок приведены в таблице 2.

Из таблицы 2 видно, что в металле, выплавленном способом-прототипом, содержание примесей кислорода и азота выше, чем в металле, выплавленном предложенным способом.

Из полученных сплавов были отлиты заготовки с равноосной структурой, из которых изготовили образцы для испытаний на длительную прочность на машине ZST2/3-ВИЭТ фирмы «Schenck» в соответствии с ГОСТ 10145. В отливках, полученных предложенным способом, остаточное содержание щелочноземельных и редкоземельных металлов ниже, а длительная прочность увеличилась в среднем на 49,3% на базе 100 ч и 47,0 % на базе 1000 ч. по сравнению со сплавом, выплавленном способом-прототипом.

Таким образом, предложенные способы обеспечивают получение жаропрочных сплавов на основе никеля как безуглеродистых, так и содержащих углерод со сниженным содержанием кислорода, азота и щелочноземельных металлов, и также обеспечивают, с одной стороны, сниженное относительно прототипа содержание редкоземельных металлов и в то же время достаточное для повышения длительной прочности. В случае производства литейных жаропрочных монокристаллических сплавов на основе никеля предложенные способы позволяют повысить также выход годного.

Источник поступления информации: Роспатент

Showing 61-70 of 354 items.
20.09.2015
№216.013.7c4b

Литейный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия системы Al-Si-Cu-Mg, применяемых в качестве базовых деталей агрегатов управления топливной системой в авиационной, автомобильной и других отраслях промышленности. Литейный...
Тип: Изобретение
Номер охранного документа: 0002563416
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
Showing 61-70 of 324 items.
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb7

Волокнистый композиционный материал с матрицей на основе ниобия

Изобретение относится к области металлургии, а именно к высокотемпературным композиционным материалам на основе ниобия, упрочненным оксидными волокнами, применяемым для изготовления конструкционных деталей авиационного назначения. Волокнистый композиционный материал содержит матрицу и...
Тип: Изобретение
Номер охранного документа: 0002568407
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92cd

Способ осаждения износостойкого покрытия на алюминиевые сплавы с высоким содержанием кремния

Изобретение относится к области осаждения износостойких комбинированных покрытий для защиты поверхностей алюминиевых сплавов от воздействия агрессивных сред и износа, в частности для защиты алюминиевых литейных сплавов с высоким содержанием кремния, и может быть использовано в авиационной...
Тип: Изобретение
Номер охранного документа: 0002569199
Дата охранного документа: 20.11.2015
+ добавить свой РИД