×
20.03.2019
219.016.e303

Результат интеллектуальной деятельности: АСТРОВИЗИРУЮЩИЙ ПРИБОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптико-электронного приборостроения и может быть использовано в системах астроориентации, астрокоррекции и астронавигации летательных аппаратов. Астровизирующий прибор содержит входную оптическую систему с объективом, в фокальной плоскости которого установлен приемник излучения с многоканальным видеовыходом, размещенные на внутренней рамке подвеса, а также внешнюю рамку подвеса и блок обработки информации, при этом многоканальный видеовыход приемника подключен к многоканальному видеовходу блока обработки информации. Внутренняя и внешняя рамки снабжены приводами и измерителями угла поворота, которые подключены к блоку обработки информации. Блок обработки информации выполнен в виде программно-аппаратного устройства управления с возможностью параллельной обработки видеоданных и содержит узлы аппаратной и программной обработки. Технический результат заключается в повышении скорости измерения углового положения заданной звезды, при снижении энергопотребления, массы и габаритных размеров астровизирующего прибора. 2 ил.

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в системах астроориентации, астрокоррекции и астронавигации летательных аппаратов.

Известен астровизирующий прибор с подвижным полем зрения (см. Федосеев В.И. и др. Оптико-электронные приборы ориентации и навигации космических аппаратов. Москва, Логос, 2007 г., стр. 142-150), содержащий входную оптическую систему с объективом, в фокальной плоскости которого установлен приемник излучения, размещенные на внутренней рамке подвеса, а так же внешнюю рамку подвеса и блок обработки информации, первый вход которого подключен к выходу, а первый управляющий выход - к управляющему входу приемника излучения, при этом внутренняя и внешняя рамки подвеса снабжены приводами, входы которых подключены соответственно ко второму и третьему управляющим выходам блока обработки информации, и измерителями угла поворота, выходы которых подключены соответственно ко второму и третьему входам блока обработки информации.

Недостатком данного устройства является большая продолжительность измерения углового положения заданной звезды, связанная с последовательным проведением операций, составляющих процесс измерения, включающий обработку информации с измерителей угла поворота и приемника излучения, формирование управляющего воздействия на приводы рамок подвеса, проведение конечных вычислений положения заданной звезды с учетом всей поступившей информации.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому эффекту является астровизирующий прибор (см. патент России №2540136, м. кл. G01C 21/02, опубл. 10.02.2015), выбранный в качестве прототипа, содержащий входную оптическую систему с объективом, в фокальной плоскости которого установлен приемник излучения, размещенные на внутренней рамке подвеса, а так же внешнюю рамку подвеса и блок обработки информации, первый вход которого подключен к выходу, а первый управляющий выход - к управляющему входу приемника излучения, при этом внутренняя и внешняя рамки подвеса снабжены приводами, входы которых подключены соответственно ко второму и третьему управляющим выходам блока обработки информации, и измерителями угла поворота. Блок обработки информации выполнен в виде многопроцессорного устройства управления, первый и второй многоканальные входы которого подключены соответственно к многоканальным выходам измерителей угла поворота. В состав вычислительной системы блока обработки информации входят три процессора. Первый процессор реализует обработку видеоданных, второй процессор, осуществляет измерение углового положения звезды, а третий - управление приводами подвеса, при этом второй процессор подключен между первым и третьим.

Процесс измерения углового положения заданной звезды запускается с управляющего устройства летательного аппарата. Команда, содержащая информацию об ожидаемом угловом положении заданной звезды, поступает в блок обработки информации. Через устройство интерфейса эта команда в виде двоичных кодов подается на второй процессор, который формирует и передает в третий процессор команду на определение разности между ожидаемым угловым положении заданной звезды и фактическим угловым положением оси визирования объектива. Третий процессор периодически, исходя из полученных результатов, рассчитывает по заданному закону регулирования управляющие воздействия, которые далее преобразуются в соответствующие напряжения на обмотках двигателей приводов. Информация о фактическом угловом положении оси визирования объектива, используемая в расчете, поступает в третий процессор с преобразователей угол-код измерителей угла поворота через соответствующее устройство интерфейса. В результате управляющего воздействия рамки подвеса поворачиваются, устанавливая объектив в требуемое угловое положение. В этом положении он удерживается с необходимой точностью, компенсируя все внешние возмущения, в течение всего времени, необходимого для измерения углового положения заданной звезды. Одновременно изображение участка звездного неба, формируемого объективом, преобразуется в приемнике излучения в последовательный цифровой поток видеоданных и направляется в первый процессор на обработку через устройство интерфейса. Первый процессор анализирует изображение заданной звезды, определяет положение его центра на матрице приемника и направляет полученные результаты во второй процессор. Второй процессор, учитывая положение центра изображения звезды и угловое положении оси визирования объектива, проводит расчет углового положения заданной звезды относительно базы астровизирующего прибора и выдает его через устройство интерфейса в управляющее устройство навигационной системы летательного аппарата для корректировки курса или положения. Информация об угловом положении оси визирования объектива поступает во второй процессор через устройство интерфейса с преобразователей угол-код измерителей угла поворота.

Недостатком рассматриваемого астровизирующего прибора является низкая скорость измерения положения заданной звезды относительно базы, ограниченная скоростью проведения операций по выделению изображения заданной звезды и определению положения его центра на матрице приемника излучения.

В ходе определения положения заданной звезды относительно базы астровизирующего прибора в блоке обработки информации вычислительная система на базе трех процессоров параллельно осуществляет следующие основные операции:

- управление приводами внутренней и внешней рамок подвеса;

- расчет углового положения оси визирования объектива по данным с преобразователей угол-код измерителей угла поворота;

- выделение изображения заданной звезды и определение положения его центра на матрице приемника излучения.

Длительность последней операции значительно больше двух предыдущих, что связано с необходимостью последовательной обработки процессором большого объема видеоданных с приемника излучения, представляющего собой матрицу фоточувствительных элементов. Поэтому длительность данной операции в основном и определяет быстродействие астровизирующего прибора в целом. При увеличении угловых скоростей эволюции летательных аппаратов или усложнении алгоритмов обработки видеоданных вычислительной способности одного процессора может оказаться недостаточно для обеспечения необходимого быстродействия астровизирующего прибора.

Кроме того, при работе в составе блока обработки информации вычислительной системы на базе трех высокопроизводительных процессоров потребляется значительная электрическая энергия, что приводит к необходимости использования источников питания повышенной мощности и введения дополнительных конструктивных элементов для обеспечения отвода выделяемого тепла. В конечном итоге ухудшаются весогабаритные характеристики прибора, являющиеся одними из основных для оборудования летательных аппаратов.

Целью заявляемого изобретения является повышение скорости измерения углового положения заданной звезды, при снижении энергопотребления, массы и габаритных размеров астровизирующего прибора.

Указанная цель достигается тем, что в астровизирующем приборе, содержащем входную оптическую систему с объективом, в фокальной плоскости которого установлен приемник излучения, размещенные на внутренней рамке подвеса, а так же внешнюю рамку подвеса и блок обработки информации, первый управляющий выход которого подключен к управляющему входу приемника излучения, при этом внутренняя и внешняя рамки снабжены приводами, входы которых подключены соответственно ко второму и третьему управляющим выходам блока обработки информации, и измерителями угла поворота, выходы которых подключены соответственно ко второму и третьему входу блока обработки информации, при этом четвертый выход блока обработки информации является выходом астровизирующего прибора, а первый управляющий вход блока обработки информации является входом астровизирующего прибора, блок обработки информации выполнен в виде программно-аппаратного устройства управления и содержит узел аппаратной обработки, первый управляющий вход, второй и третий входы которого являются соответственно первым управляющим, вторым и третьим входами устройства обработки информации, N-канальный видеовход которого является N-канальным видеовходом узла аппаратной обработки и подключен к N-канальному видеовыходу приемника излучения, при N>1, первый, второй, третий управляющие и четвертый выходы узла аппаратной обработки являются соответственно первым, вторым, третьим управляющими и четвертым входами блока обработки информации, а также узел программной обработки, подключенный портом ввода-вывода к узлу аппаратной обработки.

На фиг. 1 показана функциональная схема астровизирующего прибора.

На фиг. 2 показана функциональная схема блока обработки информации.

Астровизирующий прибор содержит входную оптическую систему 1 с объективом 2, в фокальной плоскости которого установлен приемник излучения 3, размещенные на внутренней рамке подвеса 4, а так же внешнюю рамку подвеса 6 и блок обработки информации 5, первый управляющий выход которого подключен к управляющему входу приемника излучения 3, при этом внутренняя 4 и внешняя 6 рамки снабжены приводами 7 и 8, входы которых подключены соответственно ко второму и третьему управляющим выходам блока обработки информации 5, и измерителями угла поворота 9 и 10, выходы которых подключены соответственно ко второму и третьему входу блока обработки информации 5, при этом четвертый выход блока обработки информации 5 является выходом астровизирующего прибора, а первый управляющий вход блока обработки информации 5 является входом астровизирующего прибора. Блок обработки информации 5 выполнен в виде программно-аппаратного устройства управления и содержит узел аппаратной обработки 11, первый управляющий вход, второй и третий входы которого являются соответственно первым управляющим, вторым и третьим входами устройства обработки информации 5, N-канальный видеовход которого является N-канальным видеовходом узла аппаратной обработки 11 и подключен к N-канальному видеовыходу приемника излучения 3, при этом N>1, первый, второй, третий управляющие и четвертый выходы узла аппаратной обработки 11 являются соответственно первым, вторым, третьим управляющими и четвертым входами блока обработки информации 5, а также узел программной обработки 12, подключенный портом ввода-вывода к узлу аппаратной обработки 11.

Состав и внутренние связи узла аппаратной обработки 11 могут изменяться в зависимости от конкретного варианта выполнения астровизирующего прибора. В рассматриваемом варианте в состав узла аппаратной обработки 11 входят вычислительные устройства 131-13N, 14, 15, 16, 17 и устройство интерфейса 18.

Приемник излучения 3 представляет собой матрицу фоточувствительных элементов формата 2048×2048 с устройствами считывания и аналого-цифрового преобразования и имеет 16 цифровых выходных видеоканалов. Измерители угла поворота 9 и 10 реализованы на базе высокоточной оптической энкодерной системы. Приводами 7 и 8 внутренней 4 и внешней 6 рамок подвеса являются бесконтактные моментные электродвигатели. Узел аппаратной обработки 11 может быть выполнен на программируемой логической интегральной схеме (ПЛИС) с низкой потребляемой мощностью, изготовленной по технологии field-programmable gate array (FPGA). Узел программной обработки 12 может быть выполнен на дискретном типовом цифровом сигнальном процессоре - digital signal processor (DSP) или аппаратно реализован в ПЛИС. Вычислительные устройства 131-13N, 14, 15, 16, 17 и устройство интерфейса 18 представляют собой электрические схемы, выполненные на основе простых арифметических цифровых элементов: сумматоров, умножителей, счетчиков, компараторов, мультиплексоров, а также элементов памяти: регистров, оперативных запоминающих устройств (ОЗУ) и элементов памяти «first in, first out» (FIFO). В качестве элементов электрических схем могут использоваться как дискретные микросхемы, так и внутренние конфигурируемые элементы ПЛИС, имеющие энергопотребление значительно ниже, чем у высокопроизводительных процессоров, и не требующие введения конструктивных элементов для отвода выделяемого тепла.

Основной задачей, выполняемой астровизирующим прибором совместно с управляющим устройством летательного аппарата в составе навигационной системы, является определение углового положения заданной звезды относительно базы астровизирующего прибора. Для ее реализации в предлагаемом варианте выполнения астровизирующего прибора по командам с управляющего устройства летательного аппарата (на фиг. 1 не показано) необходимо выполнить два операции, составляющие цикл измерения. Первая операция - направить объектив 2 на заданную звезду, выбранную в качестве астроориентира, вторая - одновременно с первой, выдать в управляющее устройство информацию о фактическом угловом положении оси визирования объектива 2 и положении центра изображения заданной звезды в системе координат матрицы приемника излучения 3. Происходят эти операции следующим образом.

Управляющее устройство летательного аппарата периодически, через небольшие промежутки времени подает команды, задавая последовательность выполнения операций цикла измерения, и осуществляет обмен данными с внутренними устройствами астровизирующего прибора. Обмен данными происходит через устройство интерфейса 18 узла аппаратной обработки 11.

Во время первой операции управляющее устройство летательного аппарата принимает данные о фактическом угловом положении оси визирования объектива 2. Данные поступают с преобразователей угол-код измерителей угла поворота 9 и 10, размещенных соответственно на внутренней 4 и внешней 6 рамках подвеса. Учитывая полученные данные, а также данные навигационной системы о текущем положении летательного аппарата и ожидаемом угловом положении заданной звезды, управляющее устройство летательного аппарата рассчитывает управляющее воздействие на приводы 7 и 8 внутренней 4 и внешней 6 рамок подвеса. Управляющее воздействие в виде двоичных кодов поступает на входы вычислительных устройств 16 и 17, преобразующих по определенному закону полученные данные в напряжения на обмотках двигателей приводов 7 и 8. В результате внутренняя 4 и внешняя 6 рамки подвеса приходят в движение, и ось визирования объектива 2 выводится в направление заданной звезды и удерживается в требуемом положении во время проведения измерений.

Одновременно производится вторая операция. Оптическая система 1 с объективом 2 формирует на матрице фоточувствительных элементов приемника излучения 3 изображение участка небесной сферы, включая заданную звезду. Приемник излучения 3 преобразует полученное изображение в последовательную цифровую выборку видеоданных и через N-канальный видеовыход выдает ее через N-канальный видеовход блока обработки информации 5 в узел аппаратной обработки 11. С целью повышения скорости обработки видеоданных, в узле аппаратной обработки 11 установлены вычислительные устройства 131-13N, число которых равно числу видеовыходов приемника излучения 3, при этом цифровая выборка с каждого видеовыхода поступает на соответствующее вычислительное устройство. Каждое из вычислительных устройств 131-13N параллельно, по заданному алгоритму осуществляет обработку своей части видеоданных, соответствующих определенному участку изображения. Алгоритм обработки видеоданных по определению положения центра изображения заданной звезды в системе координат матрицы приемника излучения 3 представляет собой последовательность простейших арифметических операций. Полученные данные поступают на вычислительное устройство 14, которое объединяет промежуточные результаты вычислений, выдавая конечный результат положения центра изображения заданной звезды. Узел программной обработки 12 анализирует достоверность полученного результата и при необходимости корректирует закон вычисления. В случае получения достоверного результата вычислений управляющее устройство летательного аппарата считывает данные о положении центра изображения заданной звезды в системе координат матрицы приемника излучения 3 и данные о фактическом угловом положении оси визирования объектива 2. Учитывая полученные данные, управляющее устройство корректирует управляющее воздействие на приводы 7 и 8 внутренней 4 и внешней 6 рамок подвеса. После отработки управляющего воздействия и стабилизации положения оси визирования объектива 2 управляющее устройство летательного аппарата повторно считывает данные о положении центра изображения заданной звезды и данные о фактическом угловом положении оси визирования объектива 2. В результате, управляющее устройство рассчитывает положение заданной звезды относительно базы астровизирующего прибора, которое далее используется для корректировки курса или положения летательного аппарата. При необходимости цикл измерения повторяется.

При определении положения центра изображения заданной звезды вычислительное устройство 15 предоставляет необходимые данные для работы узла программной обработки 12 и через первый управляющий выход блока обработки информации 5 устанавливает оптимальный режим работы приемника излучения 3. Информационный обмен внутри блока обработки информации 5 между вычислительными устройствами узла аппаратной обработки 11 и узлом программной обработки 12 осуществляется через устройство интерфейса 18.

Изложенный вариант выполнения является оптимальным с точки зрения гибкости алгоритмов управления астровизирующим прибором в составе навигационной системы летательного аппарата и снижения скорости измерения углового положения заданной звезды. Возможна реализация варианта выполнения астровизирующего прибора, который функционально будет соответствовать выбранному прототипу. Расчет управляющего воздействия на приводы 7 и 8 внутренней 4 и внешней 6 рамок подвеса, в таком случае, осуществляется вычислительными устройствами 16 и 17, учитывая данные об ожидаемом угловом положении заданной звезды, выданные управляющим устройством летательного аппарата. Кроме того, в расчете используются данные о фактическом угловом положении оси визирования объектива 2, считанные с преобразователей угол-код измерителей угла поворота 9 и 10. Окончательный расчет углового положения заданной звезды относительно базы астровизирующего прибора производится вычислительным устройством 14 по данным о положении центра изображения заданной звезды в системе координат матрицы приемника излучения 3. При этом учитывается текущая информация с преобразователей угол-код измерителей угла поворота 9 и 10, полученная после стабилизации положения оси визирования объектива 2.

В любом из рассмотренных вариантов, в силу указанных выше причин, длительность цикла измерения углового положения заданной звезды относительно базы астровизирующего прибора в большей степени зависит от скорости определения положении центра изображения заданной звезды. В свою очередь, скорость определения положения центра изображения увеличивается пропорционально количеству задействованных каналов обработки видеоданных N.

Время, которое в прототипе используется первым процессором на последовательную обработку видеоданных при определении положения центра изображения, в заявляемом приборе уменьшается в несколько раз за счет параллельной обработки видеоданных в блоке обработки информации, в зависимости от количества задействованных каналов. Кроме того, в прототипе блок обработки информации построен на базе трех высокопроизводительных процессоров, а в заявляемом приборе применяется только один, в результате чего снижается энергопотребление, и как следствие, масса и габаритные размеры астровизирующего прибора.

Таким образом, в результате того, что блок обработки информации выполнен в виде программно-аппаратного устройства управления с использованием ПЛИС, в котором реализована многоканальная параллельная обработка видеоданных, достигается повышение скорости измерения положения заданной звезды, при снижении энергопотребления, массы и габаритных размеров астровизирующего прибора.

Астровизирующий прибор, содержащий входную оптическую систему с объективом, в фокальной плоскости которого установлен приемник излучения, размещенные на внутренней рамке подвеса, а также внешнюю рамку подвеса и блок обработки информации, первый управляющий выход которого подключен к управляющему входу приемника излучения, при этом внутренняя и внешняя рамки снабжены приводами, входы которых подключены соответственно ко второму и третьему управляющим выходам блока обработки информации, и измерителями угла поворота, выходы которых подключены соответственно ко второму и третьему входам блока обработки информации, при этом четвертый выход блока обработки информации является выходом астровизирующего прибора, а первый управляющий вход блока обработки информации является входом астровизирующего прибора, отличающийся тем, что блок обработки информации выполнен в виде программно-аппаратного устройства управления и содержит узел аппаратной обработки, первый управляющий вход, второй и третий входы которого являются соответственно первым управляющим, вторым и третьим входами устройства обработки информации, N-канальный видеовход которого является N-канальным видеовходом узла аппаратной обработки и подключен к N-канальному видеовыходу приемника излучения, при этом N>1, первый, второй, третий управляющие и четвертый выходы узла аппаратной обработки являются соответственно первым, вторым, третьим управляющими и четвертым входами блока обработки информации, а также узел программной обработки, подключенный портом ввода-вывода к узлу аппаратной обработки.
АСТРОВИЗИРУЮЩИЙ ПРИБОР
АСТРОВИЗИРУЮЩИЙ ПРИБОР
АСТРОВИЗИРУЮЩИЙ ПРИБОР
Источник поступления информации: Роспатент

Showing 41-45 of 45 items.
20.04.2023
№223.018.4e19

Астровизирующий прибор

Предлагаемое изобретение может быть использовано в системах астронавигации малогабаритных летательных аппаратов (ЛА). Сущность заявленного изобретения состоит в следующем. Астровизирующий прибор содержит входную оптическую систему с объективом, приемник излучения, размещенные на внутренней...
Тип: Изобретение
Номер охранного документа: 0002793940
Дата охранного документа: 10.04.2023
16.05.2023
№223.018.6365

Инфракрасная система с двумя полями зрения

Изобретение относится к инфракрасным оптическим системам и может быть использовано в тепловизорах, построенных на основе охлаждаемых матричных приемников теплового излучения. Заявленная инфракрасная система состоит из последовательно расположенных вдоль оптической оси трех компонентов и...
Тип: Изобретение
Номер охранного документа: 0002779657
Дата охранного документа: 13.09.2022
21.05.2023
№223.018.68f7

Дифракционный оптический элемент

Изобретение относится к области оптической элементной базы оптико-электронного приборостроения и может быть использовано как основной диспергирующий элемент спектральных приборов со скрещенной дисперсией. Заявленный дифракционный оптический элемент содержит подложку с непрозрачным рабочим...
Тип: Изобретение
Номер охранного документа: 0002794955
Дата охранного документа: 26.04.2023
06.06.2023
№223.018.77fc

Оптическая система тепловизионного прибора с двумя полями зрения

Изобретение может быть использовано в тепловизионных приборах с охлаждаемыми матричными фотоприемными устройствами. Оптическая система тепловизионного прибора состоит из первого компонента, содержащего первую положительную выпукло-вогнутую, вторую отрицательную и третью положительную...
Тип: Изобретение
Номер охранного документа: 0002783763
Дата охранного документа: 17.11.2022
06.06.2023
№223.018.7987

Электропроводящее покрытие

Изобретение может быть использовано в оптических элементах из оптической керамики для коммутации элементов электрических схем оптико-электронных приборов, в том числе космического назначения, создания контактных электродов и электрообогрева входных окон из оптической керамики. Электропроводящее...
Тип: Изобретение
Номер охранного документа: 0002748182
Дата охранного документа: 20.05.2021
Showing 41-50 of 72 items.
17.11.2018
№218.016.9e76

Способ распознавания графических образов объектов

Изобретение относится к области цифровой обработки изображений. Технический результат – повышение скорости и точности распознавания графических образов при одновременном уменьшении количества ложных распознаваний. Способ распознавания графических образов объектов на исходном изображении,...
Тип: Изобретение
Номер охранного документа: 0002672622
Дата охранного документа: 16.11.2018
21.11.2018
№218.016.9eb3

Двухканальная зеркально-линзовая система

Изобретение может быть использовано в многоканальных оптико-электронных системах, предназначенных для обнаружения и распознавания объектов наблюдения в видимой и инфракрасной областях спектра. Система состоит из тепловизионного канала, содержащего первый компонент в виде асферических главного...
Тип: Изобретение
Номер охранного документа: 0002672703
Дата охранного документа: 19.11.2018
01.03.2019
№219.016.c9f3

Инфракрасный коллиматор

Изобретение может быть использовано для контроля параметров тепловизионных приборов. Инфракрасный коллиматор содержит объектив, миру, размещенную в фокальной плоскости перед фоновым излучателем, датчик температуры окружающей среды, корректор, предназначенный для изменения в соответствии с...
Тип: Изобретение
Номер охранного документа: 0002292067
Дата охранного документа: 20.01.2007
29.03.2019
№219.016.f2bb

Оптический дефлектор

Изобретение относится к оптико-электронному приборостроению и может быть использовано в устройствах с оптико-механическим сканированием, например, чересстрочной развертки. Оптический дефлектор содержит сканирующий элемент, упругий подвес, два пьезокерамических биморфных элемента и узел...
Тип: Изобретение
Номер охранного документа: 0002377622
Дата охранного документа: 27.12.2009
29.03.2019
№219.016.f51c

Тепловизионный канал

Изобретение относится к тепловизионным приборам на матричных фотоприемных устройствах, предназначенных для наблюдения объектов в инфракрасной области спектра. Техническим результатом является повышение надежности обнаружения тепловых объектов. Тепловизионный канал содержит объектив, в фокальной...
Тип: Изобретение
Номер охранного документа: 0002425463
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.f55d

Инфракрасный коллиматор

Инфракрасный коллиматор содержит объектив, миру, измеритель температуры миры и устройство управления. Мира размещена в фокальной плоскости инфракрасного коллиматора перед фоновым излучателем, снабженным исполнительным элементом. Выход измерителя температуры миры подключен к первому входу...
Тип: Изобретение
Номер охранного документа: 0002470335
Дата охранного документа: 20.12.2012
29.03.2019
№219.016.f6e1

Устройство заграждающее балочное

Изобретение относится к области железнодорожного транспорта, в частности к путевым тормозным устройствам железнодорожного транспорта, и предназначено для механизации процесса торможения и принудительного заграждения самопроизвольно движущихся вагонов. Устройство содержит установленные внутри...
Тип: Изобретение
Номер охранного документа: 0002436694
Дата охранного документа: 20.12.2011
29.03.2019
№219.016.f6e3

Упор для закрепления железнодорожного подвижного состава

Изобретение относится к области железнодорожного транспорта, в частности к устройствам для закрепления подвижного состава, и предназначено для механизации процессов закрепления составов на станционных путях. Упор для закрепления железнодорожного подвижного состава содержит тормозные колодки и...
Тип: Изобретение
Номер охранного документа: 0002436695
Дата охранного документа: 20.12.2011
29.03.2019
№219.016.f6e8

Гидравлический вагонный замедлитель

Изобретение относится к области железнодорожного транспорта, в частности к устройствам для регулирования скорости движения вагонов на сортировочных горках станций. Гидравлический вагонный замедлитель содержит расположенные с двух сторон рельса тормозные балки с шинами и пружинными узлами,...
Тип: Изобретение
Номер охранного документа: 0002436696
Дата охранного документа: 20.12.2011
29.03.2019
№219.016.f718

Гидравлический силомер

Изобретение относится к измерительному оборудованию железнодорожного транспорта, в частности к устройствам для измерения в эксплуатационных условиях усилий нажатия и интенсивности торможения вагонов вагонными замедлителями. Техническим результатом является повышение безопасности измерения...
Тип: Изобретение
Номер охранного документа: 0002434209
Дата охранного документа: 20.11.2011
+ добавить свой РИД