×
16.03.2019
219.016.e23a

Результат интеллектуальной деятельности: СПОСОБ ДЕГАЗАЦИИ НАНОПОРОШКА ВОЛЬФРАМА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии, в частности к очистке нанопорошка вольфрама. Может быть использовано для удаления сорбированных газов и воды с поверхности и из объема порошка при ее подготовке к дальнейшему использованию в технологическом процессе. Дегазацию осуществляют облучением образца СВЧ-излучением в атмосфере воздуха импульсами длительностью от 5 до 3000 нс, длиной волны 10 см, частотой следования импульсов не более 50 Гц в течение не менее 1 минуты. Обеспечивается дегазация абсорбированных порошком молекул химических соединений. 1 табл., 2 ил.

Изобретение относится к области порошковой металлургии и может быть использовано для удаления сорбированных газов и воды с поверхности и из объема нанопорошка вольфрама при подготовке порошка к дальнейшему использованию в технологическом процессе, например, при получении плотных прессованных или спеченных изделий.

Известен способ очистки порошка титана от примеси кислорода [RU 2494837 С1, МПК B22F 9/00 (2006.01), опубл. 10.10.2013], заключающийся в насыщении порошка титана водородом с получением порошкообразного гидрида титана и последующим удалением водорода в вакууме при температуре ниже температуры активного спекания порошка.

Сложностью реализации данного способа является необходимость использования водорода, что делает процесс пожаро- и взрывоопасным, учитывая процессы выделения кислорода из очищаемого порошка титана и его взаимодействия с водородом. Кроме того, особенностью способа является использование оборудования, работающего при высоком вакууме, что делает процесс длительным и трудоемким в обслуживании.

Известен способ десорбции-ионизации химических соединений [RU 2285253 С1, МПК G01N 27/62 (2006.01), опубл. 10.10.2006], выбранный в качестве прототипа, заключающийся в быстром нагреве активного (сорбирующего) слоя электромагнитным излучением или потоком частиц, способствующим десорбции сорбированных ионов.

Особенностью способа является использование лазера и УФ-лампы в качестве источника электромагнитного ионизирующего излучения: вследствие малой площади сечения лазерного луча и малой глубины проникновения лазерного - излучения объемная дегазация материала этим способом низкоэффективна. Кроме того, в способе необходимо использовать подложки из полупроводника, графита или активированного угля, модифицированные химическими группами, являющимися донорами и/или акцепторами электронов.

Техническим результатом предложенного способа является дегазация нанопорошка вольфрама.

Способ дегазации нанопорошка вольфрама включает облучение образца импульсным СВЧ-излучением, которым облучают образец в атмосфере воздуха импульсами длительностью от 5 до 3000 нс, длиной волны 10 см, частотой следования импульсов не более 50 Гц в течение не менее 1 минуты.

Предлагаемый способ позволяет решить техническую проблему дегазации сорбированных нанопорошком вольфрама молекул химических соединений (Н2О, СО2, О2 и др.), и так же, как в прототипе, включает облучение образца электромагнитным излучением для обеспечения десорбции сорбированных химических соединений.

Способ обеспечивает дегазацию нанопорошка вольфрама путем десорбции имеющихся в необработанном нанопорошке вольфрама 4,2 мас.% молекул химических соединений вследствие быстрого кратковременного нагревания наночастиц вольфрама импульсным СВЧ-излучением.

В таблице 1 представлены результаты термогравиметрического анализа облученных образцов нанопорошка вольфрама.

На фиг. 1 представлена термограмма нанопорошка вольфрама, не подвергнутого дегазации.

На фиг. 2 представлена термограмма нанопорошка вольфрама после дегазации.

Использовали нанопорошок вольфрама, образцы которого навеской по 2 г помещали в кварцевые пробирки объемом 3 см3 и диаметром 10 мм2 с диэлектрической проницаемостью 3,8 и располагали в волноводе генератора СВЧ-излучения на основе магнетрона МИ456. Облучение образцов проводили в воздушной атмосфере СВЧ-излучением с длиной волны 10 см и плотностью мощности не более 8 кВт/см2, импульсами длительностью от 5 до 3000 нс с частотой следования не более 50 Гц в течение 1 минуты.

После облучения образцы нанопорошка вольфрама подвергали дифференциальному термическому анализу, используя термоанализатор SDT Q 600. Точность измерения температуры составляла 0,001°С, калориметрическая точность ±1,8%, масса навески ~8 мг, скорость нагрева 10°С/с, атмосфера - воздух.

Содержание сорбированных нанопорошком вольфрама газов до и после воздействия СВЧ-излучением определяли по величине уменьшения массы образца при нагревании до начала окисления нанопорошка вольфрама (до ~350°С). В качестве образца сравнения принимали образец необработанного нанопорошка вольфрама, содержащего 4,2 мас.% сорбированных химических соединений (фиг. 1).

На фиг. 2 в качестве примера реализации представлена термограмма нанопорошка вольфрама после облучения СВЧ-излучением с длительностью импульса 25 нс. Согласно термограмме, после воздействия СВЧ-излучения произошла десорбция химических соединений, что подтверждается неизменностью массы образца при нагревании в процессе термогравиметрического анализа до температуры начала окисления. Аналогичным образом определяли дегазацию нанопорошков вольфрама при облучении импульсами длительностью 5 и 3000 нс (таблица 1).

Способ дегазации нанопорошка вольфрама, включающий облучение образца электромагнитным излучением, отличающийся тем, что в качестве электромагнитного излучения используют импульсное СВЧ-излучение, которым облучают образец в атмосфере воздуха импульсами длительностью от 5 до 3000 нс, длиной волны 10 см, частотой следования импульсов не более 50 Гц в течение не менее 1 минуты.
СПОСОБ ДЕГАЗАЦИИ НАНОПОРОШКА ВОЛЬФРАМА
СПОСОБ ДЕГАЗАЦИИ НАНОПОРОШКА ВОЛЬФРАМА
Источник поступления информации: Роспатент

Showing 191-200 of 255 items.
08.03.2019
№219.016.d30e

Способ формирования покрытия на имплантате из сплава титана

Изобретение относится к области гальванотехники, в частности к анодированию сплавов титана, и может быть использовано в травматологии, ортопедии и стоматологии. Способ включает анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в...
Тип: Изобретение
Номер охранного документа: 0002681329
Дата охранного документа: 06.03.2019
08.03.2019
№219.016.d329

Устройство для ориентирования подвижных объектов

Изобретение относится к области навигационной техники и касается устройства для ориентирования подвижных объектов. Устройство для ориентирования подвижных объектов содержит замкнутый неметаллический корпус, в котором размещено симметричное твердое тело без точки подвеса, помещенное в объем,...
Тип: Изобретение
Номер охранного документа: 0002681422
Дата охранного документа: 06.03.2019
14.03.2019
№219.016.df07

Способ получения водного раствора бикарбоната магния

Изобретение может быть использовано в промышленности строительных материалов для получения жидкости затворения. Способ включает карбонизацию водной суспензии магнезиального сырья при температуре не более 20°C и давлении углекислого газа 0,2 МПа в течение 30 мин в автоклаве с мешалкой. В...
Тип: Изобретение
Номер охранного документа: 0002681622
Дата охранного документа: 11.03.2019
14.03.2019
№219.016.df09

Способ определения ртути в рыбе и рыбных продуктах

Изобретение относится к аналитической химии и может быть использовано для определения ртути в рыбе и рыбных продуктах. Для этого гомогенизируют мясо рыбы или рыбных продуктов и помещают образец в смесь 1% раствора перманганата калия, азотной, хлорной и серной кислот, деионизированной воды в...
Тип: Изобретение
Номер охранного документа: 0002681650
Дата охранного документа: 12.03.2019
14.03.2019
№219.016.df76

Резец для горных и дорожных машин

Изобретение относится к горной промышленности и может быть использовано на исполнительных органах горных и дорожных машин при проведении проходческих и добычных работ. Технический результат - повышение эффективности отбойки горной массы. Резец содержит державку, головку в виде тела вращения со...
Тип: Изобретение
Номер охранного документа: 0002681743
Дата охранного документа: 12.03.2019
14.03.2019
№219.016.df7c

Магнезиальное вяжущее

Изобретение относится к области строительных материалов и может быть использовано для получения магнезиального цемента и различных изделий на его основе. Магнезиальное вяжущее содержит 90-95 мас. % порошка каустического магнезита, полученного или из кристаллического/аморфного магнезита, или из...
Тип: Изобретение
Номер охранного документа: 0002681746
Дата охранного документа: 12.03.2019
17.03.2019
№219.016.e26b

Способ ультразвукового контроля плотности керамических изделий

Использование: для контроля физико-технических параметров керамических изделий. Сущность изобретения заключается в том, что выполняют сканирование ультразвуковой волной изделия, регистрацию отраженных сигналов, измерение времени их распространения до изделия, измерение геометрических размеров...
Тип: Изобретение
Номер охранного документа: 0002682094
Дата охранного документа: 14.03.2019
17.03.2019
№219.016.e27a

Способ контроля механического состояния обмоток трансформатора

Изобретение относится к технике высоких напряжений и может быть использовано для контроля механического состояния обмоток силовых трансформаторов. Сущность: способ включает одновременное измерение напряжения в рабочем режиме трансформатора в течение первых 50 мкс на первичной и вторичной...
Тип: Изобретение
Номер охранного документа: 0002682082
Дата охранного документа: 14.03.2019
21.03.2019
№219.016.eb52

Индуктивно-импульсный генератор

Изобретение относится к импульсной технике и может быть использовано для питания ускорителей, плазмотронов, лазеров, электрогидравлических устройств. Генератор содержит первую катушку индуктивности, подключенную через коммутатор к одному зажиму источника постоянного тока, конденсатор,...
Тип: Изобретение
Номер охранного документа: 0002682367
Дата охранного документа: 19.03.2019
21.03.2019
№219.016.eb53

Индуктивно-импульсный генератор

Изобретение относится к импульсной технике и может быть использовано для питания ускорителей, плазмотронов, лазеров, электрогидравлических устройств. Генератор содержит первую катушку индуктивности, подключенную через коммутатор к одному зажиму источника постоянного тока, конденсатор,...
Тип: Изобретение
Номер охранного документа: 0002682394
Дата охранного документа: 19.03.2019
Showing 11-12 of 12 items.
04.02.2020
№220.017.fdb6

Устройство для исследования процесса горения порошков металлов или их смесей

Изобретение относится к области квантовой электроники, а именно неразрушающего контроля и диагностики оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом....
Тип: Изобретение
Номер охранного документа: 0002712756
Дата охранного документа: 31.01.2020
21.04.2023
№223.018.5002

Устройство для исследования процесса горения нанопорошков металлов или их смесей

Изобретение относится к области неразрушающего контроля и диагностики оптическими методами и касается устройства для исследования процесса горения нанопорошков металлов или их смесей. Устройство содержит инициирующий лазер, две цифровые камеры и лазерный усилитель яркости, на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002746308
Дата охранного документа: 12.04.2021
+ добавить свой РИД