×
16.03.2019
219.016.e1d6

Результат интеллектуальной деятельности: Твердооксидный протонпроводящий материал

Вид РИД

Изобретение

Аннотация: Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал представляет собой допированный цинком или магнием иттрат лантана состава: LaYMO, где M = Zn, Mg, а х=0.01-0.1. Изобретение позволяет снизить температуру и длительность спекания получаемого высокоплотного твердооксидного протонпроводящего материала. 2 ил., 1 табл.

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры.

Рабочими условиями большинства известных твердооксидных электрохимических устройств являются высокие температуры и агрессивные атмосферы (Н2, СО, углеводороды, синтез газ, биотопливо). Данные условия предъявляют жесткие требования к функциональным материалам электрохимических устройств: химическая стабильность электролитных мембран, их химическая и термическая совместимость с другими компонентами, высокая ионная и низкая электропроводность (проводимость).

Известен твердый электролит, представляющий собой иттрат лантан (LaYO3), обладающий термодинамической стабильностью в атмосферах с высоким содержанием паров воды и углекислого газа [1]. Данный материал характеризуется неудовлетворительной ионной проводимостью ~ 10–6 См/см в среднетемпературном интервале, кроме того его получение требует высокой (более 1450°С) температуры спекания при длительной (около 8 ч) выдержки.

Более высокой электропроводностью (~10–5–10–4См/см) обладает иттрат лантана, допированный стронцием, La0.9Sr0.1YO3–δ [2]. Замещение La3+ стронцием приводит к появлению кислородных вакансий, отвечающих за ионный перенос. Однако введение щелочноземельного элемента в состав материала может ухудшать их химическую стабильность в атмосферах, содержащих пары воды и углекислый газ, вследствие образования фаз взаимодействия (Sr(OH)2, SrCO3 или SrCO3·Sr(OH)2). Стоит отметить, что для получения высокоплотных керамических образцов (~ 95%) также требуется применение высоких температур спекания (1700°С).

Задача настоящего изобретения состоит в разработке высокоплотного твердооксидного протонпроводящего материала с повышенной ионной проводимостью, обладающего химической стабильностью при работе в атмосферах, содержащих пары воды и/или углекислый газ, при этом материал должен быть получен при сниженных температурах и длительности спекания.

Для этого предложен твердооксидный протонпроводящий материал, который, как и материал по прототипу, представляет собой допированный иттрат лантана. Заявленный материал отличается тем, что иттрат лантана допирован цинком или магнием состава: LaY1–xMxO3–δ, где M = Zn, Mg, а х=0.01-0.1

В отличие от материала по прототипу, представляющего собой иттрат лантана, допированный стронцием, требующий спекания при температуре 1700 ºС и выдержке порядка 8 ч, заявленный материал, представляющий собой иттрат лантана, допированный цинком или магнием состава: LaY1–xMxO3–δ, где M = Zn, Mg, а х=0.01-0.1, можно спекать при 1300 или 1350 °С в течение 5 ч.

Таким образом, введение магния и цинка в состав материала способствует снижению температуры и длительности его спекания. Частичное замещение иттрия на магний (LaY1–xMgxO3–δ) или цинк (LaY1–xZnxO3–δ) в процессе синтеза приводит к появлению кислородных вакансий, обеспечивающих высокую ионную проводимость материала. Заявленное количество цинка или магния в составе материала определено экспериментально, при этом установлено, что при х > 0.1 ионная проводимость материала уменьшается, а при х<0.01 – не достигается эффект уплотнения керамики при пониженных температурах спекания.

Использование в качестве допанта цинка и магния, не являющихся щелочноземельными элементами, обеспечивает химическую стабильность материала в атмосферах, содержащих пары воды и углекислый газ.

Новый технический результат, достигаемый заявленным изобретением, заключается в снижении температуры и длительности спекания получаемого высокоплотного твердооксидного протонпроводящего материала на основе иттрата лантана.

Изобретение иллюстрируется таблицей и рисунками. В таблице отражены состав исследуемых образцов из материала по прототипу и заявленного материала, условия проведения исследований, а также их результаты; на фиг.1 представлены рентгенограммы спеченных керамических образцов состава (1-6) из заявленного материала; на фиг. 2 – рентгенограммы образца состава LaY0.95Mg0.05O3–δ, после выдержки при 700°С (10 ч) в атмосферах Н2О и чистого СО2.

Заявляемый материал получали с применением цитрат-нитратного метода синтеза из прекурсоров La(NO3)3, Y(NO3)3, Mg(NO3)2 или Zn(NO3)2. В качестве топлива использовали лимонную кислоту. Полученные порошки синтезировали при 1100°С в течение 5 ч и спекали при 1300 или 1350 °С в течение 5 ч.

Рентгенофазовый анализ показал, что образцы заявленного материала являются однофазными и обладают орторомбической структурой типа перовскита (фиг. 1). Результаты гидростатического взвешивания спеченных керамических образцов свидетельствуют о получении высокоплотной керамики: ее относительная плотность составляет 98 % от теоретической. Исследование химической стабильности материала проводили путем выдержки в атмосферах H2О и CO2 при 700°С в течение 10 ч с их последующей аттестацией методом рентгенофазового анализа. Полученные методом РФА рентгенограммы спеченного образца LaY0.95Mg0.05O3–δ, а также после выдержки в парах воды и углекислом газе (фиг. 2), не фиксируют формирование примесей, что свидетельствует об устойчивости заявленных образцов по отношению как Н2О, так и СО2.

Проводимость образцов измеряли четырехзондовым методом на постоянном токе во влажном воздухе при температуре 700–900 °С, т.е. в условиях, приближенных к эксплуатационным. Результаты измерения проводимости образцов заявленного материала и прототипа приведены в таблице при 700 и 900°С. Из полученных данных следует, что образцы заявленного материала, содержащего магний, при 700 °С сопоставимы по проводимости с образцом из материала прототипа, а при 900 °С превосходят ее в 9 раз. Значения проводимости образцов заявленного материала, содержащего цинк, при 700°С и 900°С соизмеримы со значениями образца прототипа.

Таким образом, получен высокоплотный твердооксидный протонпроводящий материал на основе иттрата лантана, обладающий повышенной ионной проводимостью и химической стабильностью при работе в атмосферах, содержащих пары воды и/или углекислый газ, при этом материал может быть получен при сниженных температурах и длительности спекания.

Источники информации

1. Alcock C.B., Fergus J.W., Wang L. The electrolytic properties of LaYO3 and LaAlO3 doped with alkaline-earthoxides // Solid State Ionics. 1992. V. 51 №3-4. P. 291-295;

2. Okuyama Y. et al. Incorporation and conduction of proton in Sr-doped LaMO3 (M= Al, Sc, In, Yb, Y) // Electrochimica Acta. 2014. V. 125. P. 443-449.

Твердооксидный протонпроводящий материал, представляющий собой допированный иттрат лантана, отличающийся тем, что иттрат лантана допирован цинком или магнием состава: LaYMO, где M = Zn, Mg, а х=0.01-0.1.
Твердооксидный протонпроводящий материал
Твердооксидный протонпроводящий материал
Твердооксидный протонпроводящий материал
Источник поступления информации: Роспатент

Showing 81-90 of 94 items.
19.07.2019
№219.017.b611

Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава, в частности к способу контроля содержания глинозема при электролизе криолит-глиноземного расплава. Способ включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном...
Тип: Изобретение
Номер охранного документа: 0002694860
Дата охранного документа: 17.07.2019
03.08.2019
№219.017.bc0f

Установка для очистки галогенидных солей

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и...
Тип: Изобретение
Номер охранного документа: 0002696474
Дата охранного документа: 01.08.2019
05.09.2019
№219.017.c6fa

Способ получения остеопластического керамического материала на основе фосфата кальция

Изобретение относится к области неорганической химии, а именно к получению материалов на основе стронций-замещенного β-трикальцийфосфата, которые могут быть использованы в качестве тканеинженерных остеопластических материалов для аугментации дефектов трабекулярной костной ткани. На основу из...
Тип: Изобретение
Номер охранного документа: 0002699093
Дата охранного документа: 03.09.2019
15.11.2019
№219.017.e214

Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)

Изобретение относится к вариантам электрохимического способа формирования кристаллов оксидных вольфрамовых бронз из нановискеров. Один из вариантов включает электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном...
Тип: Изобретение
Номер охранного документа: 0002706006
Дата охранного документа: 13.11.2019
21.11.2019
№219.017.e46c

Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Изобретение относится к изготовлению единичных многослойных ячеек с тонкослойным электролитом, которые могут быть использованы в качестве твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ). Способ включает формирование ячейки из слоев функциональных материалов:...
Тип: Изобретение
Номер охранного документа: 0002706417
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e4d4

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока (ТХИТ), и может быть использовано в качестве источника электропитания силовых электрических агрегатов. Батарея содержит корпус, состоящий из двух герметичных оболочек с теплоизоляцией...
Тип: Изобретение
Номер охранного документа: 0002706728
Дата охранного документа: 20.11.2019
21.12.2019
№219.017.f02a

Твердооксидный электродный материал

Изобретение относится к высокопористым электродным материалам на основе никелата неодима, которые могут быть использованы в качестве воздушных электродов для электрохимических устройств на основе протонпроводящих электролитов, включая твердооксидные топливные элементы, сенсоры и электролизеры....
Тип: Изобретение
Номер охранного документа: 0002709463
Дата охранного документа: 18.12.2019
18.03.2020
№220.018.0ccc

Способ нанесения защитного покрытия на катоды электролизера для получения алюминия

Изобретение относится к способу нанесения защитного покрытия на катоды электролизера для получения алюминия из расплавленных электролитов, смачиваемого получаемым алюминием. Способ включает электроосаждение компонентов покрытия на катоды из расплавленного электролита, содержащего добавки,...
Тип: Изобретение
Номер охранного документа: 0002716726
Дата охранного документа: 16.03.2020
18.03.2020
№220.018.0cf5

Электролитический способ получения лигатур алюминия из оксидного сырья

Изобретение относится к способу электролитического получения лигатур алюминия из оксидного сырья. Способ включает электролиз оксидно-фторидного расплава, который ведут с использованием твердого катода при температуре выше 570 °С, а продукты электролиза с включениями компонентов расплава...
Тип: Изобретение
Номер охранного документа: 0002716727
Дата охранного документа: 16.03.2020
19.03.2020
№220.018.0d5c

Ячейка для исследования высокотемпературной проводимости твердых веществ

Ячейка для исследования высокотемпературной проводимости твердых веществ. Технический результат заключается в реализации внешнего воздействия оптического излучения на образец одновременно с воздействием температуры и газовой среды. Ячейка содержит кварцевую трубку, в которую помещен кварцевый...
Тип: Изобретение
Номер охранного документа: 0002716875
Дата охранного документа: 17.03.2020
Showing 11-11 of 11 items.
20.05.2023
№223.018.6707

Электродный материал для электрохимических устройств

Изобретение относится к твердооксидным электродным материалам на основе никелита неодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и др. Твердооксидный электродный материал содержит...
Тип: Изобретение
Номер охранного документа: 0002757926
Дата охранного документа: 25.10.2021
+ добавить свой РИД