×
16.03.2019
219.016.e1d6

Результат интеллектуальной деятельности: Твердооксидный протонпроводящий материал

Вид РИД

Изобретение

Аннотация: Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал представляет собой допированный цинком или магнием иттрат лантана состава: LaYMO, где M = Zn, Mg, а х=0.01-0.1. Изобретение позволяет снизить температуру и длительность спекания получаемого высокоплотного твердооксидного протонпроводящего материала. 2 ил., 1 табл.

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры.

Рабочими условиями большинства известных твердооксидных электрохимических устройств являются высокие температуры и агрессивные атмосферы (Н2, СО, углеводороды, синтез газ, биотопливо). Данные условия предъявляют жесткие требования к функциональным материалам электрохимических устройств: химическая стабильность электролитных мембран, их химическая и термическая совместимость с другими компонентами, высокая ионная и низкая электропроводность (проводимость).

Известен твердый электролит, представляющий собой иттрат лантан (LaYO3), обладающий термодинамической стабильностью в атмосферах с высоким содержанием паров воды и углекислого газа [1]. Данный материал характеризуется неудовлетворительной ионной проводимостью ~ 10–6 См/см в среднетемпературном интервале, кроме того его получение требует высокой (более 1450°С) температуры спекания при длительной (около 8 ч) выдержки.

Более высокой электропроводностью (~10–5–10–4См/см) обладает иттрат лантана, допированный стронцием, La0.9Sr0.1YO3–δ [2]. Замещение La3+ стронцием приводит к появлению кислородных вакансий, отвечающих за ионный перенос. Однако введение щелочноземельного элемента в состав материала может ухудшать их химическую стабильность в атмосферах, содержащих пары воды и углекислый газ, вследствие образования фаз взаимодействия (Sr(OH)2, SrCO3 или SrCO3·Sr(OH)2). Стоит отметить, что для получения высокоплотных керамических образцов (~ 95%) также требуется применение высоких температур спекания (1700°С).

Задача настоящего изобретения состоит в разработке высокоплотного твердооксидного протонпроводящего материала с повышенной ионной проводимостью, обладающего химической стабильностью при работе в атмосферах, содержащих пары воды и/или углекислый газ, при этом материал должен быть получен при сниженных температурах и длительности спекания.

Для этого предложен твердооксидный протонпроводящий материал, который, как и материал по прототипу, представляет собой допированный иттрат лантана. Заявленный материал отличается тем, что иттрат лантана допирован цинком или магнием состава: LaY1–xMxO3–δ, где M = Zn, Mg, а х=0.01-0.1

В отличие от материала по прототипу, представляющего собой иттрат лантана, допированный стронцием, требующий спекания при температуре 1700 ºС и выдержке порядка 8 ч, заявленный материал, представляющий собой иттрат лантана, допированный цинком или магнием состава: LaY1–xMxO3–δ, где M = Zn, Mg, а х=0.01-0.1, можно спекать при 1300 или 1350 °С в течение 5 ч.

Таким образом, введение магния и цинка в состав материала способствует снижению температуры и длительности его спекания. Частичное замещение иттрия на магний (LaY1–xMgxO3–δ) или цинк (LaY1–xZnxO3–δ) в процессе синтеза приводит к появлению кислородных вакансий, обеспечивающих высокую ионную проводимость материала. Заявленное количество цинка или магния в составе материала определено экспериментально, при этом установлено, что при х > 0.1 ионная проводимость материала уменьшается, а при х<0.01 – не достигается эффект уплотнения керамики при пониженных температурах спекания.

Использование в качестве допанта цинка и магния, не являющихся щелочноземельными элементами, обеспечивает химическую стабильность материала в атмосферах, содержащих пары воды и углекислый газ.

Новый технический результат, достигаемый заявленным изобретением, заключается в снижении температуры и длительности спекания получаемого высокоплотного твердооксидного протонпроводящего материала на основе иттрата лантана.

Изобретение иллюстрируется таблицей и рисунками. В таблице отражены состав исследуемых образцов из материала по прототипу и заявленного материала, условия проведения исследований, а также их результаты; на фиг.1 представлены рентгенограммы спеченных керамических образцов состава (1-6) из заявленного материала; на фиг. 2 – рентгенограммы образца состава LaY0.95Mg0.05O3–δ, после выдержки при 700°С (10 ч) в атмосферах Н2О и чистого СО2.

Заявляемый материал получали с применением цитрат-нитратного метода синтеза из прекурсоров La(NO3)3, Y(NO3)3, Mg(NO3)2 или Zn(NO3)2. В качестве топлива использовали лимонную кислоту. Полученные порошки синтезировали при 1100°С в течение 5 ч и спекали при 1300 или 1350 °С в течение 5 ч.

Рентгенофазовый анализ показал, что образцы заявленного материала являются однофазными и обладают орторомбической структурой типа перовскита (фиг. 1). Результаты гидростатического взвешивания спеченных керамических образцов свидетельствуют о получении высокоплотной керамики: ее относительная плотность составляет 98 % от теоретической. Исследование химической стабильности материала проводили путем выдержки в атмосферах H2О и CO2 при 700°С в течение 10 ч с их последующей аттестацией методом рентгенофазового анализа. Полученные методом РФА рентгенограммы спеченного образца LaY0.95Mg0.05O3–δ, а также после выдержки в парах воды и углекислом газе (фиг. 2), не фиксируют формирование примесей, что свидетельствует об устойчивости заявленных образцов по отношению как Н2О, так и СО2.

Проводимость образцов измеряли четырехзондовым методом на постоянном токе во влажном воздухе при температуре 700–900 °С, т.е. в условиях, приближенных к эксплуатационным. Результаты измерения проводимости образцов заявленного материала и прототипа приведены в таблице при 700 и 900°С. Из полученных данных следует, что образцы заявленного материала, содержащего магний, при 700 °С сопоставимы по проводимости с образцом из материала прототипа, а при 900 °С превосходят ее в 9 раз. Значения проводимости образцов заявленного материала, содержащего цинк, при 700°С и 900°С соизмеримы со значениями образца прототипа.

Таким образом, получен высокоплотный твердооксидный протонпроводящий материал на основе иттрата лантана, обладающий повышенной ионной проводимостью и химической стабильностью при работе в атмосферах, содержащих пары воды и/или углекислый газ, при этом материал может быть получен при сниженных температурах и длительности спекания.

Источники информации

1. Alcock C.B., Fergus J.W., Wang L. The electrolytic properties of LaYO3 and LaAlO3 doped with alkaline-earthoxides // Solid State Ionics. 1992. V. 51 №3-4. P. 291-295;

2. Okuyama Y. et al. Incorporation and conduction of proton in Sr-doped LaMO3 (M= Al, Sc, In, Yb, Y) // Electrochimica Acta. 2014. V. 125. P. 443-449.

Твердооксидный протонпроводящий материал, представляющий собой допированный иттрат лантана, отличающийся тем, что иттрат лантана допирован цинком или магнием состава: LaYMO, где M = Zn, Mg, а х=0.01-0.1.
Твердооксидный протонпроводящий материал
Твердооксидный протонпроводящий материал
Твердооксидный протонпроводящий материал
Источник поступления информации: Роспатент

Showing 51-60 of 94 items.
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.39a3

Способ регенерации хлоридного электролита при электрохимической переработке отработавшего ядерного топлива

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов,...
Тип: Изобретение
Номер охранного документа: 0002647125
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.4853

Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана

Изобретение может быть использовано при изготовлении электрохимических устройств, таких как твердооксидные топливные элементы, электролизеры. Для синтеза наноразмерного порошкообразного материала на основе скандата лантана смесь решеткообразующих компонентов и допанта нагревают в присутствии...
Тип: Изобретение
Номер охранного документа: 0002651009
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4c00

Способ электролитического получения алюминия

Изобретение относится к способу получения алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку оксидно-солевой смеси, содержащей криолит, оксид алюминия, фториды алюминия, кальция и магния, а также металлический алюминий, в период запуска электролизера и ведение...
Тип: Изобретение
Номер охранного документа: 0002651929
Дата охранного документа: 24.04.2018
Showing 11-11 of 11 items.
20.05.2023
№223.018.6707

Электродный материал для электрохимических устройств

Изобретение относится к твердооксидным электродным материалам на основе никелита неодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и др. Твердооксидный электродный материал содержит...
Тип: Изобретение
Номер охранного документа: 0002757926
Дата охранного документа: 25.10.2021
+ добавить свой РИД