×
16.03.2019
219.016.e1d6

Результат интеллектуальной деятельности: Твердооксидный протонпроводящий материал

Вид РИД

Изобретение

Аннотация: Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал представляет собой допированный цинком или магнием иттрат лантана состава: LaYMO, где M = Zn, Mg, а х=0.01-0.1. Изобретение позволяет снизить температуру и длительность спекания получаемого высокоплотного твердооксидного протонпроводящего материала. 2 ил., 1 табл.

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры.

Рабочими условиями большинства известных твердооксидных электрохимических устройств являются высокие температуры и агрессивные атмосферы (Н2, СО, углеводороды, синтез газ, биотопливо). Данные условия предъявляют жесткие требования к функциональным материалам электрохимических устройств: химическая стабильность электролитных мембран, их химическая и термическая совместимость с другими компонентами, высокая ионная и низкая электропроводность (проводимость).

Известен твердый электролит, представляющий собой иттрат лантан (LaYO3), обладающий термодинамической стабильностью в атмосферах с высоким содержанием паров воды и углекислого газа [1]. Данный материал характеризуется неудовлетворительной ионной проводимостью ~ 10–6 См/см в среднетемпературном интервале, кроме того его получение требует высокой (более 1450°С) температуры спекания при длительной (около 8 ч) выдержки.

Более высокой электропроводностью (~10–5–10–4См/см) обладает иттрат лантана, допированный стронцием, La0.9Sr0.1YO3–δ [2]. Замещение La3+ стронцием приводит к появлению кислородных вакансий, отвечающих за ионный перенос. Однако введение щелочноземельного элемента в состав материала может ухудшать их химическую стабильность в атмосферах, содержащих пары воды и углекислый газ, вследствие образования фаз взаимодействия (Sr(OH)2, SrCO3 или SrCO3·Sr(OH)2). Стоит отметить, что для получения высокоплотных керамических образцов (~ 95%) также требуется применение высоких температур спекания (1700°С).

Задача настоящего изобретения состоит в разработке высокоплотного твердооксидного протонпроводящего материала с повышенной ионной проводимостью, обладающего химической стабильностью при работе в атмосферах, содержащих пары воды и/или углекислый газ, при этом материал должен быть получен при сниженных температурах и длительности спекания.

Для этого предложен твердооксидный протонпроводящий материал, который, как и материал по прототипу, представляет собой допированный иттрат лантана. Заявленный материал отличается тем, что иттрат лантана допирован цинком или магнием состава: LaY1–xMxO3–δ, где M = Zn, Mg, а х=0.01-0.1

В отличие от материала по прототипу, представляющего собой иттрат лантана, допированный стронцием, требующий спекания при температуре 1700 ºС и выдержке порядка 8 ч, заявленный материал, представляющий собой иттрат лантана, допированный цинком или магнием состава: LaY1–xMxO3–δ, где M = Zn, Mg, а х=0.01-0.1, можно спекать при 1300 или 1350 °С в течение 5 ч.

Таким образом, введение магния и цинка в состав материала способствует снижению температуры и длительности его спекания. Частичное замещение иттрия на магний (LaY1–xMgxO3–δ) или цинк (LaY1–xZnxO3–δ) в процессе синтеза приводит к появлению кислородных вакансий, обеспечивающих высокую ионную проводимость материала. Заявленное количество цинка или магния в составе материала определено экспериментально, при этом установлено, что при х > 0.1 ионная проводимость материала уменьшается, а при х<0.01 – не достигается эффект уплотнения керамики при пониженных температурах спекания.

Использование в качестве допанта цинка и магния, не являющихся щелочноземельными элементами, обеспечивает химическую стабильность материала в атмосферах, содержащих пары воды и углекислый газ.

Новый технический результат, достигаемый заявленным изобретением, заключается в снижении температуры и длительности спекания получаемого высокоплотного твердооксидного протонпроводящего материала на основе иттрата лантана.

Изобретение иллюстрируется таблицей и рисунками. В таблице отражены состав исследуемых образцов из материала по прототипу и заявленного материала, условия проведения исследований, а также их результаты; на фиг.1 представлены рентгенограммы спеченных керамических образцов состава (1-6) из заявленного материала; на фиг. 2 – рентгенограммы образца состава LaY0.95Mg0.05O3–δ, после выдержки при 700°С (10 ч) в атмосферах Н2О и чистого СО2.

Заявляемый материал получали с применением цитрат-нитратного метода синтеза из прекурсоров La(NO3)3, Y(NO3)3, Mg(NO3)2 или Zn(NO3)2. В качестве топлива использовали лимонную кислоту. Полученные порошки синтезировали при 1100°С в течение 5 ч и спекали при 1300 или 1350 °С в течение 5 ч.

Рентгенофазовый анализ показал, что образцы заявленного материала являются однофазными и обладают орторомбической структурой типа перовскита (фиг. 1). Результаты гидростатического взвешивания спеченных керамических образцов свидетельствуют о получении высокоплотной керамики: ее относительная плотность составляет 98 % от теоретической. Исследование химической стабильности материала проводили путем выдержки в атмосферах H2О и CO2 при 700°С в течение 10 ч с их последующей аттестацией методом рентгенофазового анализа. Полученные методом РФА рентгенограммы спеченного образца LaY0.95Mg0.05O3–δ, а также после выдержки в парах воды и углекислом газе (фиг. 2), не фиксируют формирование примесей, что свидетельствует об устойчивости заявленных образцов по отношению как Н2О, так и СО2.

Проводимость образцов измеряли четырехзондовым методом на постоянном токе во влажном воздухе при температуре 700–900 °С, т.е. в условиях, приближенных к эксплуатационным. Результаты измерения проводимости образцов заявленного материала и прототипа приведены в таблице при 700 и 900°С. Из полученных данных следует, что образцы заявленного материала, содержащего магний, при 700 °С сопоставимы по проводимости с образцом из материала прототипа, а при 900 °С превосходят ее в 9 раз. Значения проводимости образцов заявленного материала, содержащего цинк, при 700°С и 900°С соизмеримы со значениями образца прототипа.

Таким образом, получен высокоплотный твердооксидный протонпроводящий материал на основе иттрата лантана, обладающий повышенной ионной проводимостью и химической стабильностью при работе в атмосферах, содержащих пары воды и/или углекислый газ, при этом материал может быть получен при сниженных температурах и длительности спекания.

Источники информации

1. Alcock C.B., Fergus J.W., Wang L. The electrolytic properties of LaYO3 and LaAlO3 doped with alkaline-earthoxides // Solid State Ionics. 1992. V. 51 №3-4. P. 291-295;

2. Okuyama Y. et al. Incorporation and conduction of proton in Sr-doped LaMO3 (M= Al, Sc, In, Yb, Y) // Electrochimica Acta. 2014. V. 125. P. 443-449.

Твердооксидный протонпроводящий материал, представляющий собой допированный иттрат лантана, отличающийся тем, что иттрат лантана допирован цинком или магнием состава: LaYMO, где M = Zn, Mg, а х=0.01-0.1.
Твердооксидный протонпроводящий материал
Твердооксидный протонпроводящий материал
Твердооксидный протонпроводящий материал
Источник поступления информации: Роспатент

Showing 11-20 of 94 items.
10.02.2014
№216.012.9f99

Генератор влажности газов

Изобретение относится к аналитической технике, в частности к генераторам создания и поддержания заданной влажности или осушения газов. Генератор влажности газов содержит помещенную в термостат рабочую камеру, включающую в себя кислородпроводящий и протонпроводящий твердые электролиты,...
Тип: Изобретение
Номер охранного документа: 0002506565
Дата охранного документа: 10.02.2014
27.03.2014
№216.012.ae7e

Твердооксидный композитный материал для мембран электрохимических устройств

Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, и может быть использовано, в частности, для получения кислорода или водорода. Твердооксидный композитный материал для мембран электрохимических устройств содержит титанато-феррит стронция и...
Тип: Изобретение
Номер охранного документа: 0002510385
Дата охранного документа: 27.03.2014
20.05.2014
№216.012.c333

Электрохимический способ получения лигатурных алюминий-циркониевых сплавов

Изобретение относится к электрохимическому получению лигатурных алюминий-циркониевых сплавов. В способе осуществляют анодную гальваностатическую поляризацию циркония с плотностью тока 0,5-4,0 мАсм в течение 1-5 часов в расплавленных хлоридах щелочных металлов или смеси...
Тип: Изобретение
Номер охранного документа: 0002515730
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c87c

Электрохимический способ получения металлов и/или сплавов из малорастворимых и нерастворимых соединений

Изобретение относится к электрохимическому способу получения металлов, за исключением щелочных и щелочно-земельных, и/или сплавов металлов. Способ включает восстановление металлов и/или сплавов в кальцийсодержащем оксидно-галогенидном расплаве из соединений получаемых металлов и/или из смесей...
Тип: Изобретение
Номер охранного документа: 0002517090
Дата охранного документа: 27.05.2014
10.07.2014
№216.012.dc5a

Способ получения двухслойного несущего катода для твердооксидных топливных элементов

Изобретение относится к области электротехники, а именно к несущим катодам на основе манганита лантана стронция. Способ получения двухслойного катода для твердооксидных топливных элементов, включает формование электродного и коллекторного слоев катода и их спекание, при этом коллекторный слой...
Тип: Изобретение
Номер охранного документа: 0002522188
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.dd82

Способ изготовления газоплотной керамики для элементов электрохимических устройств

Изобретение относится к изготовлению газоплотной оксидной керамики со смешанной ионно-электронной проводимостью. Заявлен способ изготовления газоплотной керамики для элементов электрохимических устройств, который включает получение оксидо-органической формовочной массы смешиванием оксидного...
Тип: Изобретение
Номер охранного документа: 0002522492
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec5

Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях

Изобретение может быть использовано для измерения концентрации монооксида углерода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях выполнен в виде таблетки из твердого оксидного электролита, на одну из поверхностей таблетки...
Тип: Изобретение
Номер охранного документа: 0002522815
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df2e

Электролизер для тонкослойного электролитического рафинирования металлического свинца

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму,...
Тип: Изобретение
Номер охранного документа: 0002522920
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e233

Способ получения твердооксидного топливного элемента с двухслойным несущим катодом

Изобретение относится к области электротехники, а именно к способу получения твердооксидного топливного элемента с двухслойным несущим катодом, который включает формование электродного и коллекторного слоев катода, их спекание, при этом на электродный слой катода наносят и припекают слой...
Тип: Изобретение
Номер охранного документа: 0002523693
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e957

Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием...
Тип: Изобретение
Номер охранного документа: 0002525543
Дата охранного документа: 20.08.2014
Showing 11-11 of 11 items.
20.05.2023
№223.018.6707

Электродный материал для электрохимических устройств

Изобретение относится к твердооксидным электродным материалам на основе никелита неодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и др. Твердооксидный электродный материал содержит...
Тип: Изобретение
Номер охранного документа: 0002757926
Дата охранного документа: 25.10.2021
+ добавить свой РИД